The present work addresses chaos synchronization between two different general chaotic systems with parametric and structural uncertainties, subject to external disturbances and input dead-zone nonlinearities. In this regard, a novel robust controller has been designed that guarantees asymptotic stability of synchronization errors and boundedness of all closed-loop signals. One advantage of the proposed controller over the existing control algorithms is using only one update law for estimating the structural uncertainties, external disturbances, and unknown characteristics of the dead-zone nonlinearities, which reduces the computational burden considerably. The designed controller is singularity free, and a smooth projection algorithm has been used to make the controller more robust. In addition, a finite-time controller has been designed and its performance has been compared with the robustly designed controller.
SummaryIn this paper, a novel robust model reference adaptive impedance control (RMRAIC) scheme is presented for an active transtibial ankle prosthesis. The controller makes the closed loop dynamics of the prosthesis similar to a reference impedance model and provides asymptotic tracking of the response trajectory of this impedance model. The interactions between human and prosthesis are taken into account by designing a second-order reference impedance model. The proposed controller is robust against parametric uncertainties in the nonlinear dynamic model of the prosthesis. Also, the controller has robustness against bounded uncertainties due to unavailable ground reaction forces and unmeasurable feedbacks of accelerations at the socket place. Moreover, an appropriate Series Elastic Actuator (SEA) mechanism for the prosthetic ankle is included in this work and its effects are discussed. Tracking performance and stability of the closed-loop system are proven via the Lyapunov stability analysis. Using simulations on an overall amputee prosthetic foot system, the effectiveness of the proposed RMRAIC controller is investigated for the task of level ground walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.