Locating diseases precisely from medical images, like ultrasonic and CT images, have been one of the most challenging problems in medical image analysis. In recent years, the vigorous development of deep learning models have greatly improved the accuracy in disease location on medical images. However, there are few artificial intelligent methods for identifying cholelithiasis and classifying gallstones on CT images, since no open source CT images dataset of cholelithiasis and gallstones is available for training the models and verifying their performance. In this paper, we build up the first medical image dataset of cholelithiasis by collecting 223846 CT images with gallstone of 1369 patients. With these CT images, a neural network is trained to “pick up” CT images of high quality as training set, and then a novel Yolo neural network, named Yolov3-arch neural network, is proposed to identify cholelithiasis and classify gallstones on CT images. Identification and classification accuracies are obtained by 10-fold cross-validations. It is obtained that our Yolov3-arch model is with average accuracy 92.7% in identifying granular gallstones and average accuracy 80.3% in identifying muddy gallstones. This achieves 3.5% and 8% improvements in identifying granular and muddy gallstones to general Yolo v3 model, respectively. Also, the average cholelithiasis identifying accuracy is improved to 86.50% from 80.75%. Meanwhile, our method can reduce the misdiagnosis rate of negative samples by the object detection model.
The optimization of logistics distribution can be defined as the multiple traveling salesman problem (MTSP). The purpose of existing heuristic algorithms, such as Genetic Algorithm (GA), Ant Colony Algorithm (ACO), etc., is to find the optimal path in a short time. However, two important factors of logistics distribution optimization, including work time window and the carrying capacity of the vehicle in distribution system, have been ignored. In this paper, we consider the influences of time limitation of modern commercial logistics and carrying capacity of the vehicle on the logistics optimization, and then propose a MTSP with constraints of time window and capacity of each salesman. We design a novel hybrid algorithm by combining the minimum spanning 1-tree with ACO to find the optimal solution. In addition, we improve the pheromone update rules to increase the search efficiency of ACO algorithm. The experiments show that the novel hybrid algorithm achieves a shorter path than the other algorithms. INDEX TERMS multiple traveling salesman problem, ant colony optimization, time window, capacity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.