Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.T he process of decay and decomposition in mammalian and other vertebrate taxa is a key step in biological nutrient cycling. Without the action of vertebrate and invertebrate scavengers, bacteria, archaea, fungi, and protists, chemical decomposition of animal waste would proceed extremely slowly and lead to reservoirs of biochemical waste (1). The coevolution of microbial decomposers with the availability of vertebrate corpses over the past 400 million years is expected to result in conservation of key biochemical metabolic pathways and cross-kingdom ecological interactions for efficient recycling of nutrient reserves. Although mammalian corpses likely represent a relatively small component of the detritus pool (2, 3) in most ecosystems, their role in nutrient cycling and community dynamics may be disproportionately large relative to input size, owing to the high nutrient content of corpses (3, 4) and their rapid rates of decomposition [e.g., up to three orders of magnitude faster than plant litter (2)]. These qualities make corpses a distinct and potentially critical driver of terrestrial function (5, 6).When a mammalian body is decomposing, microbial and biochemical activity results in a series of decomposition stages (5) that are associated with a reproducible microbial succession across mice (7), swine (8), and human corpses (9). Yet the microbial metabolism and successional ecology underpinning decomposition are still poorly understood. At present, we do not fully comprehend (i) whether microbial taxa that drive decomposition are ubiquitous across environment, season, and host phylogeny; (ii) whether microbes that drive decomposition derive primarily from the host or from the environment; and (iii) whether the metabolic succession of microbial decomposition is conserved across the physicochemical context of decay and host phylogeny.Several questions arise: Are microbial decomposer communities ubiquitous? What is the origin of the microbial decomposer community? How does mammalian decomposition affect the metabolic capacity of microbial communities? To answer these questions, we used mouse...
Human decomposition is a mosaic system with an intimate association between biotic and abiotic factors. Despite the integral role of bacteria in the decomposition process, few studies have catalogued bacterial biodiversity for terrestrial scenarios. To explore the microbiome of decomposition, two cadavers were placed at the Southeast Texas Applied Forensic Science facility and allowed to decompose under natural conditions. The bloat stage of decomposition, a stage easily identified in taphonomy and readily attributed to microbial physiology, was targeted. Each cadaver was sampled at two time points, at the onset and end of the bloat stage, from various body sites including internal locations. Bacterial samples were analyzed by pyrosequencing of the 16S rRNA gene. Our data show a shift from aerobic bacteria to anaerobic bacteria in all body sites sampled and demonstrate variation in community structure between bodies, between sample sites within a body, and between initial and end points of the bloat stage within a sample site. These data are best not viewed as points of comparison but rather additive data sets. While some species recovered are the same as those observed in culture-based studies, many are novel. Our results are preliminary and add to a larger emerging data set; a more comprehensive study is needed to further dissect the role of bacteria in human decomposition.
Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.
It is generally accepted that male genitalia evolve more rapidly and divergently relative to non-genital traits due to sexual selection, but there is little quantitative comparison of the pattern of evolution between these character sets. Moreover, despite the fact that genitalia are still among the most widely used characters in insect systematics, there is an idea that the rate of evolution is too rapid for genital characters to be useful in forming clades. Based on standard measures of fit used in cladistic analyses, we compare levels of homoplasy and synapomorphy between genital and non-genital characters of published data sets and demonstrate that phylogenetic signal between these two character sets is statistically similar. This pattern is found consistently across different insect orders at different taxonomic hierarchical levels. We argue that the fact that male genitalia are under sexual selection and thus diverge rapidly does not necessarily equate with the lack of phylogenetic signal, because characters that evolve by descent with modification make appropriate characters for a phylogenetic analysis, regardless of the rate of evolution. We conclude that male genitalia are a composite character consisting of different components diverging separately, which make them ideal characters for phylogenetic analyses, providing information for resolving varying levels of hierarchy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.