With the extensive application of 3D maps, acquiring high-quality images with unmanned aerial vehicles (UAVs) for precise 3D reconstruction has become a prominent topic of study. In this research, we proposed a coverage path planning method for UAVs to achieve full coverage of a target area and to collect high-resolution images while considering the overlap ratio of the collected images and energy consumption of clustered UAVs. The overlap ratio of the collected image set is guaranteed through a map decomposition method, which can ensure that the reconstruction results will not get affected by model breaking. In consideration of the small battery capacity of common commercial quadrotor UAVs, ray-scan-based area division was adopted to segment the target area, and near-optimized paths in subareas were calculated by a simulated annealing algorithm to find near-optimized paths, which can achieve balanced task assignment for UAV formations and minimum energy consumption for each UAV. The proposed system was validated through a site experiment and achieved a reduction in path length of approximately 12.6% compared to the traditional zigzag path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.