Generative Adversarial Networks (GANs) have shown remarkable success in producing realistic-looking images in the computer vision area. Recently, GAN-based techniques are shown to be promising for spatio-temporal-based applications such as trajectory prediction, events generation, and time-series data imputation. While several reviews for GANs in computer vision have been presented, no one has considered addressing the practical applications and challenges relevant to spatio-temporal data. In this article, we have conducted a comprehensive review of the recent developments of GANs for spatio-temporal data. We summarise the application of popular GAN architectures for spatio-temporal data and the common practices for evaluating the performance of spatio-temporal applications with GANs. Finally, we point out future research directions to benefit researchers in this area.
The prediction of flight delays plays a significantly important role for airlines and travellers because flight delays cause not only tremendous economic loss but also potential security risks. In this work, we aim to integrate multiple data sources to predict the departure delay of a scheduled flight. Different from previous work, we are the first group, to our best knowledge, to take advantage of airport situational awareness map, which is defined as airport traffic complexity (ATC), and combine the proposed ATC factors with weather conditions and flight information. Features engineering methods and most state-of-the-art machine learning algorithms are applied to a large real-world data sources. We reveal a couple of factors at the airport which has a significant impact on flight departure delay time. The prediction results show that the proposed factors are the main reasons behind the flight delays. Using our proposed framework, an improvement in accuracy for flight departure delay prediction is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.