With the development of new energy vehicle technology, battery management systems used to monitor the state of the battery have been widely researched. The accuracy of the battery status assessment to a great extent depends on the accuracy of the battery model parameters. This paper proposes an improved method for parameter identification and state-of-charge (SOC) estimation for lithium-ion batteries. Using a two-order equivalent circuit model, the battery model is divided into two parts based on fast dynamics and slow dynamics. The recursive least squares method is used to identify parameters of the battery, and then the SOC and the open-circuit voltage of the model is estimated with the extended Kalman filter. The two-module voltages are calculated using estimated open circuit voltage and initial parameters, and model parameters are constantly updated during iteration. The proposed method can be used to estimate the parameters and the SOC in real time, which does not need to know the state of SOC and the value of open circuit voltage in advance. The method is tested using data from dynamic stress tests, the root means squared error of the accuracy of the prediction model is about 0.01 V, and the average SOC estimation error is 0.0139. Results indicate that the method has higher accuracy in offline parameter identification and online state estimation than traditional recursive least squares methods.
Imaging through wavy air-water surface suffers from uneven geometric distortions and motion blur due to surface fluctuations. Structural information of distorted underwater images is needed to correct this in some cases, such as submarine cable inspecting. This paper presents a new structural information restoration method for underwater image sequences using an image registration algorithm. At first, to give higher priority to structural edge information, a reference frame is reconstructed from the sequence frames by a combination of lucky patches chosen and the guided filter. Then an iterative robust registration algorithm is applied to remove the severe distortions by registering frames against the reference frame, and the registration is guided towards the sharper boundary to ensure the integrity of edges. The experiment results show that the method exhibits improvement in sharpness and contrast, especially in some structural information such as text. Furthermore, the proposed edge-first registration strategy has faster iteration velocity and convergence speed compared with other registration strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.