BackgroundSpatial analysis has been vital in mapping the spread of diseases and assisting in policy making. Targeting diarrhea transmission hotspots is one of the potential strategies for reducing diarrhea cases. This study aimed to examine the spatial-temporal variations and to identify the modifiable determinants of diarrhea while controlling for the spatial dependence in the data.MethodsAn ecological study on diarrhea data from DLHS-3 and NFHS- 4 in India. Moran’s I and LISA were used to detect the spatial clustering of diarrhea cases and to test for clustering in the data. Spatial regression was used to identify the modifiable factors associated with the prevalence of diarrhea. The study comprised of the prevalence of diarrhea among the children below the age of five years (U-5 s) across different states in India. The determinants of diarrhea were obtained using spatial lag models. The software used were GeoDa 1.6.6 and QGIS 2.0.ResultsThe presence of spatial autocorrelation in DLHS-3 and NFHS-4 (Moron’s I = 0.577 and 0.369 respectively) enforces the usage of geographical properties while modeling the diarrhea data. The geographic clustering of high-prevalence districts was observed in the state of UP consistently. The spatial pattern of the percentage of children with diarrhea was persistently associated with the household with a sanitation facility (%) (p = 0.023 and p = 0.011). Compared to the diarrhea cases in the period 2007–2008, no much reduction was observed in the period 2015–2016. The prevalence of diarrhea and percentage of household with sanitation were ranging between 0.1–33.8% and 1.3–96.1% in the period 2007–2008 and 0.6–29.1% and 10.4–92.0% in the period 2015–2016 respectively. The least and highest prevalence of diarrhea being consistently from Assam and UP respectively.ConclusionDespite improvements in controlling spread of diarrheal disease, the burden remains high. Focus on widespread diarrheal disease control strategy by addressing the social determinants of health like basic sanitation is crucial to reduce the burden of diarrhea among U-5 s in India. The identification of hotspots will aid in the planning of control strategies for goal setting in the targeted regions.Electronic supplementary materialThe online version of this article (10.1186/s12889-018-6213-z) contains supplementary material, which is available to authorized users.
The present study reports an alternative method of functionalizing the optical fiber Surface Plasmon Resonance (SPR) sensing probe with antibodies for label-free detection of bovine serum albumin (BSA) protein. In this novel approach, the gold coated fiber was first modified with Molybdenum disulfide (MoS
2
) nanosheets followed by its bio-functionalization with Anti-BSA antibodies. The developed technique not only allowed the amplification of the SPR signals by synergic effects of MoS
2
and gold metallic thin film but also enabled a direct and chemical-free attachment of representative antibodies through hydrophobic interactions. The sensitivity of the MoS
2
modified sensing probe with detection limit of 0.29 µg/mL was improved as compared to the fiber optic SPR biosensor without MoS
2
overlayer (Detection limit for BSA was 0.45 μg/mL). The developed biosensor has good specificity, and environmental stability. Accordingly, the proposed design of the MoS
2
based SPR optical biosensor can offer the development of a simplified optical device for the monitoring of various biomedical and environmental parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.