Sucrose is not only the carbon source for starch synthesis, but also a signal molecule. Alone or in coordination with ABA, it can regulate the expression of genes involved in starch synthesis. To investigate the molecular mechanisms underlying this effect, maize endosperms were collected from Zea mays L. B73 inbred line 10 d after pollination and treated with sucrose, ABA, or sucrose plus ABA at 28 °C in the dark for 24 h. RNA-sequence analysis of the maize endosperm transcriptome revealed 47 candidate transcription factors among the differentially expressed genes. We therefore speculate that starch synthetic gene expression is regulated by transcription factors induced by the combination of sucrose and ABA. ZmEREB156, a candidate transcription factor, is induced by sucrose plus ABA and is involved in starch biosynthesis. The ZmEREB156-GFP-fused protein was localized in the nuclei of onion epidermal cells, and ZmEREB156 protein possessed strong transcriptional activation activity. Promoter activity of the starch-related genes Zmsh2 and ZmSSIIIa increased after overexpression of ZmEREB156 in maize endosperm. ZmEREB156 could bind to the ZmSSIIIa promoter but not the Zmsh2 promoter in a yeast one-hybrid system. Thus, ZmEREB156 positively modulates starch biosynthetic gene ZmSSIIIa via the synergistic effect of sucrose and ABA.
Background Starch biosynthesis in endosperm is a key process influencing grain yield and quality in maize. Although a number of starch biosynthetic genes have been well characterized, the mechanisms by which the expression of these genes is regulated, especially in regard to microRNAs (miRNAs), remain largely unclear. Results Sequence data for small RNAs, degradome, and transcriptome of maize endosperm at 15 and 25 d after pollination (DAP) from inbred lines Mo17 and Ji419, which exhibit distinct starch content and starch granule structure, revealed the mediation of starch biosynthetic pathways by miRNAs. Transcriptome analysis of these two lines indicated that 33 of 40 starch biosynthetic genes were differentially expressed, of which 12 were up-regulated in Ji419 at 15 DAP, one was up-regulated in Ji419 at 25 DAP, 14 were up-regulated in Ji419 at both 15 and 25 DAP, one was down-regulated in Ji419 at 15 DAP, two were down-regulated in Ji419 at 25 DAP, and three were up-regulated in Ji419 at 15 DAP and down-regulated in Ji419 at 25 DAP, compared with Mo17. Through combined analyses of small RNA and degradome sequences, 22 differentially expressed miRNAs were identified, including 14 known and eight previously unknown miRNAs that could target 35 genes. Furthermore, a complex co-expression regulatory network was constructed, in which 19 miRNAs could modulate starch biosynthesis in endosperm by tuning the expression of 19 target genes. Moreover, the potential operation of four miRNA-mediated pathways involving transcription factors, miR169a- NF-YA1 - GBSSI / SSIIIa and miR169o- GATA9 - SSIIIa / SBEIIb , was validated via analyses of expression pattern, transient transformation assays, and transactivation assays. Conclusion Our results suggest that miRNAs play a critical role in starch biosynthesis in endosperm, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing maize endosperm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5945-1) contains supplementary material, which is available to authorized users.
Background Transmembrane protein with EGF-like and two follistatin-like domains 2 (TMEFF2) is a transmembrane protein in the tomoregulin family. Little research has been performed to determine whether TMEFF2 methylation is a prognostic marker in adult diffuse gliomas. Methods In this study, we investigated TMEFF2 expression in surgical glioma tissue samples. In addition, we conducted bisulfite amplicon sequencing (BSAS) and methylation-specific PCR (MSP) to evaluate TMEFF2 methylation in glioblastoma (GBM) cells. Subsequently, we investigated the biological function of TMEFF2 in GBM cells. Moreover, we explored the prognostic significance of TMEFF2 in gliomas by analysing a cohort dataset from TCGA. Results Immunohistochemistry analysis of 75 paired glioma tumour and peritumoural tissues demonstrated that glioma tumour tissues expressed lower TMEFF2 levels than peritumoural tissues (P < 0.001). TMEFF2 promoter methylation levels were increased in glioblastoma cells compared with SVG p12 cells (P < 0.001). Inhibition of methylation reduced TMEFF2 methylation and increased its expression in LN229 and T98G cells (P < 0.05). Knockdown of TMEFF2 expression significantly promoted the proliferation of U87MG cells and primary GBM cells (P < 0.05). TMEFF2 methylation is negatively associated with IDH1, ATRX and TP53 mutations, and the subtype of glioma harbouring combined IDH1/ATRX/TP53 mutations was associated with low TMEFF2 methylation levels. Survival analysis confirmed that low TMEFF2 methylation levels are associated with good prognosis in glioma patients. Conclusions Our results suggest that TMEFF2 DNA methylation might be associated with glioma tumour progression and could serve as a valuable prognostic marker for adult diffuse gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.