Diffusion on networks is an important concept in network science observed in many situations such as information spreading and rumor controlling in social networks, disease contagion between individuals, and cascading failures in power grids. The critical interactions in networks play critical roles in diffusion and primarily affect network structure and functions. While interactions can occur between two nodes as pairwise interactions, i.e., edges, they can also occur between three or more nodes, which are described as higher-order interactions. This report presents a novel method to identify critical higher-order interactions in complex networks. We propose two new Laplacians to generalize standard graph centrality measures for higher-order interactions. We then compare the performances of the generalized centrality measures using the size of giant component and the Susceptible-Infected-Recovered (SIR) simulation model to show the effectiveness of using higher-order interactions. We further compare them with the first-order interactions (i.e., edges). Experimental results suggest that higher-order interactions play more critical roles than edges based on both the size of giant component and SIR, and the proposed methods are promising in identifying critical higher-order interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.