A series of perylene tetracarboxylic acid bisimides 3a-e bearing 3,4,5-tridodecyloxyphenyl substituents on the imide N atoms and zero, two, or four phenoxy-type substituents in the bay positions of the perylene core were synthesized. From investigations of their spectroscopic properties and aggregation behavior in low-polarity solvents by absorption and fluorescence optical spectroscopy, not only were these compounds found to form fluorescent J-type aggregates, but also binding constants for aggregation could be derived which reflect the number and steric demand of the phenoxy substituents for bisimides 3a-d. In the pristine state, 3a-d form thermotropic hexagonal columnar mesophases which exist over a broad temperature range from below -30 degrees C to over 300 degrees C. For the tetraphenoxy-substituted compound 3e, however, a layered crystalline structure was found. This difference in behavior can be explained by the concept of microphase segregation of the aromatic cores of the molecules and the alkyl chains at the periphery. The high stability and bright fluorescence of the mesophase of several of the compounds make them promising for applications as polarizers or components in (opto)electronic devices.
Novel bolaamphiphiles consisting of a rigid biphenyl unit, two terminal polar 1,2-diol units and laterally attached (semi)perfluorinated chains have been synthesized via palladium-catalyzed cross coupling reactions as the key step. The thermotropic liquid crystalline behavior of these compounds was investigated by polarized light optical microscopy, DSC, and X-ray scattering, and the influences of the length, number, structure, and position of the lateral chain on the mesomorphic properties were studied. A wide variety of unique liquid crystalline phases were found upon elongation of the lateral semiperfluorinated chains. For short- and medium-chain length a series of columnar phases were observed, and upon further elongation of the lateral chain a series of novel mesophases with layer structures were found. In the columnar phases, the nonpolar lateral chains segregate into columns, which are embedded in honeycomb-like networks of cylinders consisting of the biphenyl units. Strings of hydrogen-bonding networks of the diol groups provide cohesive forces, which maintain the overall structure. Changing the length of the lateral chains influences the diameter of the columns and thus determines the number of biphenyl units which are required to surround these columns. The number of these units [four (c2mm, p4mm), five (p2gg), six (p6mm), eight (c2mm) or 10 (p2gg)] defines the shape of the cylinders as well as the lattice type of the columnar phase. It is proposed that the columnar phases with a p2gg lattice result from the regular organization of pairs of cylinders which have a pentagonal cross sectional shape. In the mesophases with layer structure the aromatic rodlike cores are arranged parallel to the layer planes, and the onset of orientational and positional ordering of the biphenyl segments leads to a sequence of subtypes for these lamellar phases (Lam(Iso)-Lam(N)-Lam(X)).
Novel bent-core (banana-shaped) liquid crystals without Schiff-base units have been synthesized and investigated by polarized light optical microscopy, differential scanning calorimetry, X-ray scattering, and electrooptical investigations. These molecules are 4-(4-alkylbenzoyloxy)benzoates and 4-(4-alkoxybenzoyloxy)benzoates of resorcinol, 3,4′-dihydroxybiphenyl, and 4,4′′-dihydroxy-1,1′:3′,1′′-terphenyl. Three different mesophases were found depending on the molecular structure and the length of the terminal alkyl chains: a rectangular columnar phase, a highly ordered low-temperature mesophase, and an antiferroelectric switchable fluid smectic mesophase designated as SmCP A . The influence of the molecular structure on the occurrence of the SmCP A phase was investigated. The spontaneous polarization of these molecules is quite high (P S ) 500-700 nC cm -2 ) and specially those molecules with long alkyl chains and short bent-core structures have low melting points and broad regions of this switchable mesophase. Furthermore, first examples of antiferroelectric switchable bent-core molecules with semifluorinated terminal chains will be described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.