Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.
Breast cancer is genetically and clinically heterogeneous. Triple negative breast cancer (TNBC) is a subtype of breast cancer that is usually associated with poor outcome and lack of benefit from targeted therapy. We used microarray analysis to perform a pathway analysis of TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), low density lipoprotein receptor-related protein 6 and transcription factor 7 (TCF7) was observed in TNBC, and we directed our focus to the Wnt pathway receptor, FZD7. To validate the function of FZD7, FZD7shRNA was used to knock down FZD7 expression. Notably, reduced cell proliferation and suppressed invasiveness and colony formation were observed in TNBC MDA-MB-231 and BT-20 cells. Study of the possible mechanism indicated that these effects occurred through silencing of the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of b-catenin and decreased transcriptional activity of TCF7. In vivo studies revealed that FZD7shRNA significantly suppressed tumor formation, through reduced cell proliferation, in mice bearing xenografts without FZD7 expression. Our findings suggest that FZD7-involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC, and thus, FZD7 shows promise as a biomarker and a potential therapeutic target for TNBC.
Reported here is a new concept and its practical implementation that involves the novel utilization of open metal sites (OMS) for architectural pore design. Specifically, it is shown here that OMS can be used to run extended hooks (isonicotinate in this work) from the framework wall to channel centers to effect the capture of single metal ions or clusters, with the concurrent partition of the large channel space into multiple domains, alteration of host-guest charge relationship and associated guest-exchange properties, as well as the transfer of OMS from the wall to the channel centers. The concept of the extended hook, demonstrated here in the multi-component dual-metal and dual-ligand system, should be generally applicable to a range of framework types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.