Highly expanded Cretaceous–Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)–International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarse-grained suevite, including clasts possibly generated by melt–water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impact-induced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms.
This study presents petrographic and geochemical characterization of 46 pre-impact rocks and 32 impactites containing and/or representing impact melt rock from the peak ring of the Chicxulub impact structure (Yucatán, Mexico). The aims were both to investigate the components that potentially contributed to the impact melt (i.e., the pre-impact lithologies) and to better elucidate impact melt rock emplacement at Chicxulub. The impactites presented here are subdivided into two sample groups: the lower impact melt rock−bearing unit, which intrudes the peak ring at different intervals, and the upper impact melt rock unit, which overlies the peak ring. The geochemical characterization of five identified pre-impact lithologies (i.e., granitoid, dolerite, dacite, felsite, and limestone) was able to constrain the bulk geochemical composition of both impactite units. These pre-impact lithologies thus likely represent the main constituent lithologies that were involved in the formation of impact melt rock. In general, the composition of both impactite units can be explained by mixing of the primarily felsic and mafic lithologies, but with varying degrees of carbonate dilution. It is assumed that the two units were initially part of the same impact-produced melt, but discrete processes separated them during crater formation. The lower impact melt rock−bearing unit is interpreted to represent impact melt rock injected into the crystalline basement during the compression/excavation stage of cratering. These impact melt rock layers acted as delamination surfaces within the crystalline basement, accommodating its displacement during peak ring formation. This movement strongly comminuted the impact melt rock layers present in the peak ring structure. The composition of the upper impact melt rock unit was contingent on the entrainment of carbonate components and is interpreted to have stayed at the surface during crater development. Its formation was not finalized until the modification stage, when carbonate material would have reentered the crater.
This study presents a new classification of a ∼100-m-thick crater suevite sequence in the recent International Ocean Discovery Program (IODP)-International Continental Scientific Drilling Program (ICDP) Expedition 364 Hole M0077A drill core to better understand the formation of suevite on top of the Chicxulub peak ring. We provide an extensive data set for this succession that consists of whole-rock major and trace element compositional data (n = 212) and petrographic data supported by digital image analysis. The suevite sequence is subdivided into three units that are distinct in their petrography, geochemistry, and sedimentology, from base to top: the ∼5.6-m-thick non-graded suevite unit, the ∼89-m-thick graded suevite unit, and the ∼3.5-m-thick bedded suevite unit. All of these suevite units have isolated Cretaceous planktic foraminifera within their clastic groundmass, which suggests that marine processes were responsible for the deposition of the entire M0077A suevite sequence. The most likely scenario describes that the first ocean water that reached the northern peak ring region entered through a N-NE gap in the Chicxulub outer rim. We estimate that this ocean water arrived at Site M0077 within 30 minutes after the impact and was relatively poor in rock debris. This water caused intense quench fragmentation when it interacted with the underlying hot impact melt rock, and this resulted in the emplacement of the ∼5.6-m-thick hyaloclastite-like, non-graded suevite unit. In the following hours, the impact structure was flooded by an ocean resurge rich in rock debris, which caused the phreatomagmatic processes to stop and the ∼89-m-thick graded suevite unit to be deposited. We interpret that after the energy of the resurge slowly dissipated, oscillating seiche waves took over the sedimentary regime and formed the ∼3.5-m-thick bedded suevite unit. The final stages of the formation of the impactite sequence (estimated to be <20 years after impact) were dominated by resuspension and slow atmospheric settling, including the final deposition of Chicxulub impactor debris. Cumulatively, the Site M0077 suevite sequence from the Chicxulub impact site preserved a high-resolution record that provides an unprecedented window for unravelling the dynamics and timing of proximal marine cratering processes in the direct aftermath of a large impact event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.