Air pollution is a widespread problem due to its impact on both humans and the environment. Providing decision makers with artificial intelligence based solutions requires to monitor the ambient air quality accurately and in a timely manner, as AI models highly depend on the underlying data used to justify the predictions. Unfortunately, in urban contexts, the hyper-locality of air quality, varying from street to street, makes it difficult to monitor using high-end sensors, as the cost of the amount of sensors needed for such local measurements is too high. In addition, development of pollution dispersion models is challenging. The deployment of a low-cost sensor network allows a more dense cover of a region but at the cost of noisier sensing. This paper describes the development and deployment of a low-cost sensor network, discussing its challenges and applications, and is highly motivated by talks with the local municipality and the exploration of new technologies to improve air quality related services. However, before using data from these sources, calibration procedures are needed to ensure that the quality of the data is at a good level. We describe our steps towards developing calibration models and how they benefit the applications identified as important in the talks with the municipality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.