A new efficient protocol for the nickel-catalyzed Heck reaction of aryl triflates with vinyl ethers is presented. Mild reaction conditions that equal those of the corresponding palladium-catalyzed Heck reaction are applied, representing a practical and more sustainable alternative to the conventional regioselective arylation of vinyl ethers. A catalytic system comprised of Ni(COD)(2) and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) in combination with the tertiary amine Cy(2)NMe proved effective in the olefination of a wide range of aryl triflates. Both electron-deficient and electron-rich arenes proved compatible, and the corresponding aryl methyl ketone could be secured after hydrolysis in yields approaching quantitative. Good functional group tolerance was observed matching the characteristics of the analogous Pd-catalyzed Heck reaction. The high levels of catalytic activity were explained by the intermediacy of a cationic nickel(II) complex potentially responsible for the successive β-hydride elimination and base promoted catalyst regeneration. Although these elementary reactions are normally considered challenging, DFT calculations suggested this pathway to be favorable under the applied reaction conditions.
A protocol has been developed for conducting the palladium-catalyzed reductive carbonylation of aryl iodides and bromides using 9-methylfluorene-9-carbonyl chloride (COgen) as a source of externally delivered carbon monoxide in a sealed two-chamber system (COware), and potassium formate as the in situ hydride source. The method is tolerant to a wide number of functional groups positioned on the aromatic ring, and it can be exploited for the isotope labeling of the aldehyde group. Hence, reductive carbonylations run with (13)COgen provide a facile access to (13)C-labeled aromatic aldehydes, whereas with DCO2K, the aldehyde is specifically labeled with deuterium. Two examples of double isotopic labeling are also demonstrated. Finally, the method was applied to the specific carbon-13 labeling of the β-amyloid binding compound, florbetaben.
A protocol for the Pd-catalyzed hydroxycarbonylation of aryl iodides, bromides, and chlorides has been developed using only 1-5 mol % of CO, corresponding to a p(CO) as low as 0.1 bar. Potassium formate is the only stoichiometric reagent, acting as a mildly basic nucleophile and a reservoir of CO. The substoichiometric CO could be delivered to the reaction from an acyl-Pd(II) precatalyst, which provides both the CO and an active catalyst, and thereby obviates the need for handling a toxic gas.
Man up your magnesium! By employing a MgCl2/Et3N system, aryl diketones can be generated from the Pd‐catalyzed carbonylative α‐arylation of acetylacetone with aryl bromides (see scheme). The method is ideal for the introduction of carbon isotopes into more complex structures, since only stoichiometric amounts of carbon monoxide are employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.