Although charge-carrier selectivity in conventional crystalline silicon (c-Si) solar cells is usually realized by doping Si, the presence of dopants imposes inherent performance limitations due to parasitic absorption and carrier recombination. The development of alternative carrier-selective contacts, using non-Si electron and hole transport layers, has the potential to overcome such drawbacks and simultaneously reduce the cost and/or simplify the fabrication process of c-Si solar cells. Nevertheless, devices relying on such non-Si contacts with power conversion efficiencies (PCEs) that rival their classical counterparts are yet to be demonstrated. In this study, one key element is brought forward toward this demonstration by incorporating low-pressure chemical vapor deposited ZnO as the electron transport layer in c-Si solar cells. Placed at the rear of the device, it is found that rather thick (75 nm) ZnO film capped with LiF x /Al simultaneously enables efficient electron selectivity and suppression of parasitic infrared absorption. Next, these electron-selective contacts are integrated in c-Si solar cells with MoO x -based hole-collecting contacts at the device front to realize full-area dopant-freecontact solar cells. In the proof-of-concept device, a PCE as high as 21.4% is demonstrated, which is a record for this novel device class and is at the level of conventional industrial solar cells.
Nanostructured silicon solar cells show great potential for new-generation photovoltaics due to their ability to approach ideal light-trapping. However, the nanofeatured morphology that brings about the optical benefits also introduces new recombination channels, and severe deterioration in the electrical performance even outweighs the gain in optics in most attempts. This Research News article aims to review the recent progress in the suppression of carrier recombination in silicon nanostructures, with the emphasis on the optimization of surface morphology and controllable nanostructure height and emitter doping concentration, as well as application of dielectric passivation coatings, providing design rules to realize high-efficiency nanostructured silicon solar cells on a large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.