Background. Subcutaneous immunotherapy (SCIT) is an effective therapy for allergic rhinitis (AR), but some AR patients still do not benefit from it. Nasal nitric oxide (nNO) and inducible nitric oxide synthase (iNOS/NOS2) act important roles in AR. This study aims to explore the abilities of serum NOS2 and nNO in predicting the clinical efficacy of SCIT in AR patients. Methods. We recruited 40 healthy controls (HCs) and 120 AR patients in this study. Serum NOS2 and nNO levels were compared between the two groups. In the AR group, patients underwent and finished 1-year of SCIT, and divided into the effective and ineffective groups, and the relationships between serum NOS2 and nNO levels and efficacy of SCIT were evaluated. Results. The serum NOS2 and nNO levels were higher in AR patients than HCs. In the effective group, the serum NOS2 and nNO levels were increased than the ineffective group. ROC curves presented that a combination of serum NOS2 and nNO exhibited promising predictive ability in predicting the clinical efficacy of SCIT. Conclusions. Serum NOS2 and nNO levels were enhanced in AR patients and might affect the efficacy of SCIT. The combined use of serum NOS2 and nNO levels could be a reliable and useful method for predicting the clinical efficacy of SCIT.
BackgroundC-X-C motif ligand 13 (CXCL13) and B cell-activating factor (BAFF) are proven to be involved in inflammatory diseases, but their role in allergic rhinitis (AR) remains unclear. The aim of this study was to investigate the role of serum CXCL13 and BAFF in AR and their clinical values as objective biomarkers to predict the efficacy of subcutaneous immunotherapy (SCIT).MethodsWe prospectively recruited 90 children with AR treated with SCIT and collected their serum specimens before SCIT. One-year follow-up was conducted for all patients, and they were categorized into effective and ineffective groups based on efficacy. The serum concentrations of CXCL13 and BAFF were detected and compared between the two groups. A validation cohort of 52 responders and 26 non-responders were further assessed for both cytokines and serum CXCL13 and BAFF levels were assayed by enzyme-linked immunosorbent assay (ELISA).ResultsEighty children completed the follow-up schedule, and 56 children were categorized into the effective group and 24 children into the ineffective group. The serum levels of CXCL13 in the effective group were clearly higher than those in the ineffective group (P < 0.05). Receiver operating characteristic (ROC) curves revealed the potential values of CXCL13 as a biomarker in predicting the response of SCIT. Further, in the validation cohort, ELISA results demonstrated that serum CXCL13 levels were increased in responders than non-responders (P < 0.05). ROC curves showed good accuracy of serum CXCL13 in predicting the efficacy of SCIT.ConclusionOur discovery–validation study demonstrated that circulating CXCL13 might serve as a novel biomarker to predict the outcome of SCIT in childhood AR. The findings indicated that CXCL13 was involved in the pathological mechanisms of AR and made help to the fundamental therapeutic mechanism of SCIT.
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.