Conventional representation based classifiers, ranging from the classical nearest neighbor classifier and nearest subspace classifier to the recently developed sparse representation based classifier (SRC) and collaborative representation based classifier (CRC), are essentially distance based classifiers. Though SRC and CRC have shown interesting classification results, their intrinsic classification mechanism remains unclear. In this paper we propose a probabilistic collaborative representation framework, where the probability that a test sample belongs to the collaborative subspace of all classes can be well defined and computed. Consequently, we present a probabilistic collaborative representation based classifier (ProCRC), which jointly maximizes the likelihood that a test sample belongs to each of the multiple classes. The final classification is performed by checking which class has the maximum likelihood. The proposed ProCRC has a clear probabilistic interpretation, and it shows superior performance to many popular classifiers, including SRC, CRC and SVM. Coupled with the CNN features, it also leads to state-of-the-art classification results on a variety of challenging visual datasets.
The success of fine-grained visual categorization (FGVC) extremely relies on the modeling of appearance and interactions of various semantic parts. This makes FGVC very challenging because: (i) part annotation and detection require expert guidance and are very expensive; (ii) parts are of different sizes; and (iii) the part interactions are complex and of higher-order. To address these issues, we propose an end-to-end framework based on higherorder integration of hierarchical convolutional activations for FGVC. By treating the convolutional activations as local descriptors, hierarchical convolutional activations can serve as a representation of local parts from different scales. A polynomial kernel based predictor is proposed to capture higher-order statistics of convolutional activations for modeling part interaction. To model inter-layer part interactions, we extend polynomial predictor to integrate hierarchical activations via kernel fusion. Our work also provides a new perspective for combining convolutional activations from multiple layers. While hypercolumns simply concatenate maps from different layers, and holistically-nested network uses weighted fusion to combine side-outputs, our approach exploits higher-order intra-layer and inter-layer relations for better integration of hierarchical convolutional features. The proposed framework yields more discriminative representation and achieves competitive results on the widely used FGVC datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.