This article presents the conceptual design of a novel compliant microelectromechanical systems (MEMS)-based gripper with integrated electrothermal actuator and electrothermal force sensor. By this design solution, the device possesses some unique characteristics including a small and compact footprint size, and a large driving force by the thermal actuator. Owing to the use of a compliant rotational bearing, a large gripping range is obtained. The sensing arm has a capability of detecting the force transmitted from the left arm so as to prevent the damage of the grasped object. Analytical models are developed to evaluate the statics and dynamics performance of the gripper. Simulation results show that the thermal actuator produces sufficient gripping force to execute the gripping operation with a range of 80 mm under a low input voltage of 6 V. Moreover, the results of the established theoretical models match well with the finite element analysis (FEA) simulation results, which verifies the feasibility of the proposed gripper design.
This paper presents the design, simulation, fabrication, and testing processes of a new microelectromechanical systems (MEMS) microgripper, which integrates an electrostatic actuator and a capacitive force sensor. One advantage of the presented gripper is that the gripping force and interaction force in two orthogonal directions can be, respectively, detected by a single force sensor. The whole gripper structure consists of the left actuating part and right sensing part. It owns a simple structure and compact footprint. The actuator and sensor are fixed and linearly guided by four leaf flexures, respectively. The left arm of the gripper is driven through a lever amplification mechanism. By this structure, the displacement from the electrostatic actuator is transmitted and enlarged at the gripper tip. The right arm of the gripper is designed to detect the gripping and interaction forces using a capacitive sensor. The MEMS gripper is manufactured by SOIMUMPs process. The performance of the designed gripper is verified by conducting finite element analysis (FEA) simulation and experimental studies. Moreover, the demonstration of biocellulose gripping confirms the feasibility of the developed gripper device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.