Journal articleIFPRI3; CRP2; A Ensuring Sustainable food production; A.1 Global Futures and Strategic Foresight; ISIEPTD; PIMPRCGIAR Research Program on Policies, Institutions, and Markets (PIM
Maize is grown by millions of smallholder farmers in South Asia (SA) under diverse environments. The crop is grown in different seasons in a year with varying exposure to weather extremes, including high temperatures at critical growth stages which are expected to increase with climate change. This study assesses the impact of current and future heat stress on maize and the benefit of heat-tolerant varieties in SA. Annual mean maximum temperatures may increase by 1.4-1.8°C in 2030 and 2.1-2.6°C in 2050, with large monthly, seasonal, and spatial variations across SA. The extent of heat stressed areas in SA could increase by up to 12 % in 2030 and 21 % in 2050 relative to the baseline. The impact of heat stress and the benefit from heat-tolerant varieties vary with the level of temperature increase and planting season. At a regional scale, climate change would reduce rainfed maize yield by an average of 3.3-6.4 % in 2030 and 5.2-12.2 % in 2050 and irrigated yield by 3-8 % in 2030 and 5-14 % in 2050 if current varieties were grown under the future climate. Under projected climate, heat-tolerant varieties could minimize yield loss (relative to current maize varieties) by up to 36 and 93 % in 2030 and 33 and 86 % in 2050 under rainfed and irrigated conditions, respectively. Heat-tolerant maize varieties, therefore, have the potential to shield maize farmers from severe yield loss due to heat stress and help them adapt to climate change impacts.
Purpose
– The purpose of this study is to examine the biophysical and socioeconomic impacts of climate change on maize production and food security in sub-Saharan Africa (SSA) using adapted improved maize varieties and well-calibrated and validated bioeconomic models.
Design/methodology/approach
– Using the past climate (1950-2000) as a baseline, the study estimated the biophysical impacts of climate change in 2050 (2040-2069) and 2080 (2070-2099) under the A1B emission scenario and three nitrogen levels, and the socioeconomic impacts in 2050.
Findings
– Climate change will affect maize yields across SSA in 2050 and 2080, and the extent of the impact at a given period will vary considerably between input levels, regions and maize mega environments (MMEs). Greater relative yield reductions may occur under medium and high-input intensification than under low intensification, in Western and Southern Africa than in Eastern and Central Africa and in lowland and dry mid-altitude than in highland and wet mid-altitude MMEs. Climate change may worsen food insecurity in SSA in 2050 through its negative impact on maize consumption and reduction in daily calorie intake. However, international trade has the potential to offset some of the negative impacts.
Originality/value
– The study calibrated and applied bioeconomic models to estimate the biophysical and socioeconomic impact of climate change on maize production at fine resolution. The results could be used as a baseline to evaluate measures that will be applied to adapt maize to the future climate in SSA.
Climate variability with unexpected droughts and floods causes serious production losses and worsens food security, especially in Sub‐Saharan Africa. This study applies stochastic bioeconomic modeling to analyze smallholder adaptation to climate and price variability in Ethiopia. It uses the agent‐based simulation package Mathematical Programming‐based Multi‐Agent Systems (MPMAS) to capture nonseparable production and consumption decisions at household level, considering livestock and eucalyptus sales for consumption smoothing, as well as farmer responses to policy interventions. We find the promotion of new maize and wheat varieties to be an effective adaptation option, on average, especially when accompanied by policy interventions such as credit and fertilizer subsidy. We also find that the effectiveness of available adaptation options is quite different across the heterogeneous smallholder population in Ethiopia. This implies that policy assessments based on average farm households may mislead policy makers to adhere to interventions that are beneficial on average albeit ineffective in addressing the particular needs of poor and food insecure farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.