Protein and heme structural changes of ferric and ferrous cytochrome c (Cyt-c) that are induced by electrostatic binding (e.g., liposomes, electrodes), by hydrophobic interactions (e.g., monomeric sodium dodecyl sulfate), by guanidium hydrochloride (GuHCl), and at low pH and high temperature were studied by UV-vis absorption, circular dichroism (CD), electron paramagnetic resonance (EPR), and (surface-enhanced) resonance Raman [(SE)RR] spectroscopy. In a global spectral analysis, all species that differ with respect to the heme structure were identified and characterized in terms of the spin and ligation state of the heme as well as of protein secondary and tertiary structure changes. The results indicate that the upper part of the heme pocket including the Met-80 ligand is the most labile protein region such that this ligand is dissociated from the heme iron in all nonnative Cyt-c states. Among these states, there are two six-coordinated low-spin (LS) configurations with H 2 O or His-33 serving as the sixth (axial) ligand. Whereas the ferric H 2 O/His-18-ligated low-spin species is only formed in the A state at low pH and high ionic strength, the His-33/His-18-ligation pattern corresponds to a stable ferric configuration inasmuch as it can be induced by electrostatic and hydrophobic interactions and under nondenaturing and denaturing conditions, that is, nearly independent of the secondary structure. Conversely, the heme pocket on the opposite side of the heme remains largely preserved except for ferric Cyt-c at very low pH and high GuHCl concentrations as indicated by the replacement of His-18 by a water molecule. Structural changes that are localized in the heme pocket and lead to a ferric bis-His-coordinated LS, a ferric water/His and mono-His high-spin (HS), and a ferrous mono-His HS configuration may be induced by hydrophobic or electrostatic interactions with the front surface of Cyt-c. The present study contributes to a consistent description of the conformational manifold of Cyt-c, which is essential for elucidating the role of conformational transitions during the natural functions of Cyt-c in energy transduction and apoptosis.
The interactions of ferric cytochrome c (Cyt-c) with dioleoyl-phosphatidylglycerol (DOPG) at low ionic strength have been studied by viscosity and turbidity measurements as well as by resonance Raman, circular dichroism, and UV-vis-absorption spectroscopy to monitor the structural changes of the liposomes and the protein upon complex formation. The observed mutual structural changes in the liposomes and the protein are associated with three different modes of protein binding. At high lipid/protein (L/P) ratios, Cyt-c binds electrostatically to the anionic headgroups of the phospholipids which induces structural changes of the protein. Decreasing the L/P-ratio weakens the electrostatic interactions such that membrane anchoring of Cyt-c can effectively compete with peripheral binding. This mode of binding is accompanied by an increase of long-range liposomeliposome interactions. Upon lowering the L/P-ratio below the ratio for full protein coverage of the vesicles, further Cyt-c binding is achieved via interactions with the protein monolayer. This mode of binding initiates phase separation of the liposome aggregates from the aqueous buffer. Our results indicate that the crucial parameter controlling the interplay between the binding modes appears to be the membrane surface potential which in turn sensitively depends on the protein coverage.
The spectral dynamics of individual bacterial light-harvesting-2 pigment-protein complexes have been studied at 1.4 K. The data provided the spectral diffusion kernel of the optical transitions of the embedded B800 bacteriochlorophyll a pigments. This kernel can be described by either a single Gaussian function or a superposition of Gaussian functions. Moreover, we found that the chromophores interact with two classes of TLSs that can be distinguished by their distance from the chromophore and are most likely located outside (class 1) and inside (class 2) the protein matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.