Interest in sebaceous gland physiology and its diseases is rapidly increasing. We provide a summarized update of the current knowledge of the pathobiology of acne vulgaris and new treatment concepts that have emerged in the last 3 years (2005)(2006)(2007)(2008). We have tried to answer questions arising from the exploration of sebaceous gland biology, hormonal factors, hyperkeratinization, role of bacteria, sebum, nutrition, cytokines and toll-like receptors (TLRs). Sebaceous glands play an important role as active participants in the innate immunity of the skin. They produce neuropeptides, excrete antimicrobial peptides and exhibit characteristics of stem cells. Androgens affect sebocytes and infundibular keratinocytes in a complex manner influencing cellular differentiation, proliferation, lipogenesis and comedogenesis. Retention hyperkeratosis in closed comedones and inflammatory papules is attributable to a disorder of terminal keratinocyte differentiation. Propionibacterium acnes, by acting on TLR-2, may stimulate the secretion of cytokines, such as interleukin (IL)-6 and IL-8 by follicular keratinocytes and IL-8 and -12 in macrophages, giving rise to inflammation. Certain P. acnes species may induce an immunological reaction by stimulating the production of sebocyte and keratinocyte antimicrobial peptides, which play an important role in the innate immunity of the follicle. Qualitative changes of sebum lipids induce alteration of keratinocyte differentiation and induce IL-1 secretion, contributing to the development of follicular hyperkeratosis. High glycemic load food and milk may induce increased tissue levels of 5a-dihydrotestosterone. These new aspects of acne pathogenesis lead to the considerations of possible customized therapeutic regimens. Current research is expected to lead to innovative treatments in the near future. Biology of sebaceous glandsThe sebaceous gland is a holocrine gland, and its secretion is formed by the complete disintegration of the glandular cells. Excreting sebum is the major function of sebaceous glands (1), and increased sebum excretion is a major concurrent event that parallels the development of acne lesions. With the development of human sebaceous gland experimental models for in vitro studies (2-5), considerable progress has been made in our understanding of many new
Abstract:In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research to obtain more details on their effectiveness, and for the development of new treatments. Palmitoyl pentapeptide-4 and Carnosine are other well-researched cosmeceuticals. Additionally, there are many more peptides that are used in cosmetics. However, study results for some are sparse, or have not been published in scientific journals. This article summarizes topical peptides with proven efficacy in controlled in vivo studies.
Skin has been reported to reflect the general inner-health status and aging. Nutrition and its reflection on skin has always been an interesting topic for scientists and physicians throughout the centuries worldwide. Vitamins, carotenoids, tocopherols, flavonoids and a variety of plant extracts have been reported to possess potent anti-oxidant properties and have been widely used in the skin care industry either as topically applied agents or oral supplements in an attempt to prolong youthful skin appearance. This review will provide an overview of the current literature “linking” nutrition with skin aging.
Acne is the most common skin disease which affects millions of people worldwide. Seborrhea and sebostasis are major cosmetic problems but also lead occasionally to diseases. This article summarizes the data of newest research of sebostasis, seborrhoea and acne made possible through the development of human and animal sebocyte culture models.
Introduction: With progressing ageing human sebocytes reduce lipid production. However, the influence of certain aging mechanisms on sebaceous lipid synthesis as well as ways to influence the latter is not fully identified. Certain lipids act as ligands of nuclear receptors such as PPAR. Phospholipase (PLA2) catalyzes the hydrolysis of the sn‐2 fatty acyl bond of phospholipids to yield free fatty acid and lysophospholipid. It has been hypothesized that PPAR may be activated by hydrolysis products of phospholipids and also by eicosanoids obtained through PLA2 activity. Materials and Methods: A method to quantify sebaceous lipid synthesis of SZ95 sebocytes in vitro was established and the cells were treated by snake venom Bothrops moojeni gel filtration fractions (Botmo GF). Botmo GF fractions were further purified by RP‐HPLC, and a fraction with PLA2 activity (Botmo GF11‐117) and a fraction without enzymatic activity (Botmo GF11‐101) were identified and additionally tested. Results: Botmo GF fractions increased lipogenesis in SZ95 sebocytes without inducing apparent toxic or apoptotic effects. Botmo GF11‐101 (1 μg/ml) enhanced neutral lipid synthesis by up to 170% and polar lipid synthesis by up to 120%. The enzymatically active PLA2 Botmo GF11‐117 (1 μg/ml) increased synthesis of neutral lipids by up to 200%, and polar lipids by up to 120% compared to untreated SZ95 sebocytes. Conclusion: PLA2 activation or suppression could be important for human sebaceous lipogenesis. PLA2 modifiers may be attractive for skin lipid research and pharmacological/cosmetic products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.