The "in silico" exploration of chemical, physical and biological systems requires accurate and efficient energy functions to follow their nuclear dynamics at a molecular and atomistic level. Recently, machine learning tools gained a lot of attention in the field of molecular sciences and simulations and are increasingly used to investigate the dynamics of such systems. Among the various approaches, artificial neural networks (NNs) are one promising tool to learn a representation of potential energy surfaces. This is done by formulating the problem as a mapping from a set of atomic positions x and nuclear charges Z i to a potential energy V (x). Here, a fully-dimensional, reactive neural network representation for malonaldehyde (MA), acetoacetaldehyde (AAA) and acetylacetone (AcAc) is learned. It is used to run finite-temperature molecular dynamics simulations, and to determine the infrared spectra and the hydrogen transfer rates for the three molecules. The finite-temperature infrared spectrum for MA based on the NN learned on MP2 reference data provides a realistic representation of the lowfrequency modes and the H-transfer band whereas the CH vibrations are somewhat too high in frequency. For AAA it is demonstrated that the IR spectroscopy is sensitive to the position of the transferring hydrogen at either the OCH-or OCCH 3 end of the molecule. For the hydrogen transfer rates it is demonstrated that the O-O vibration (at ∼ 250 cm −1 ) is a gating mode and largely determines the rate at which the hydrogen is transferred between the donor and acceptor. Finally, possibilities to further improve such NN-based potential energy surfaces are explored. They include the transferability of an NN-learned energy function across chemical species (here methylation) and transfer learning from a lower level of reference data (MP2) to a higher level of theory (pair natural orbital-LCCSD(T)).
An overview of computational methods to describe high-dimensional potential energy surfaces suitable for atomistic simulations is given. Particular emphasis is put on accuracy, computability, transferability and extensibility of the methods discussed. They include empirical force fields, representations based on reproducing kernels, using permutationally invariant polynomials, neural network-learned representations and combinations thereof. Future directions and potential improvements are discussed primarily from a practical, application-oriented perspective.
The vibrational dynamics of formic acid monomer (FAM) and dimer (FAD) is investigated from machine-learned potential energy surfaces at the MP2 (PESMP2) and transfer-learned (PESTL) to the CCSD(T) levels of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.