Abstract.We have produced granular films based on carbon and different transition metals by means of plasma deposition processes. Some of the films possess an increased strain sensitivity compared to metallic films. They respond to strain almost linearly with gauge factors of up to 30 if strained longitudinally, while in the transverse direction about half of the effect is still measured. In addition, the film's thermal coefficient of resistance is adjustable by the metal concentration. The influence of metal concentration was investigated for the elements Ni, Pd, Fe, Pt, W, and Cr, while the elements Co, Au, Ag, Al, Ti, and Cu were studied briefly. Only Ni and Pd have a pronounced strain sensitivity at 55 ± 5 at. % (atomic percent) of metal, among which Ni-C is far more stable. Two phases are identified by transmission electron microscopy and X-ray diffraction: metal-containing nanocolumns densely packed in a surrounding carbon phase. We differentiate three groups of metals, due to their respective affinity to carbon. It turns out that only nickel has the capability to bond and form a stable and closed encapsulation of GLC around each nanoparticle. In this structure, the electron transport is in part accomplished by tunneling processes across the basal planes of the graphitic encapsulation. Hence, we hold these tunneling processes responsible for the increased gauge factors of Ni-C composites. The other elements are unable to form graphitic encapsulations and thus do not exhibit elevated gauge factors.
Abstract. Granular and columnar nickel-carbon composites may exhibit large strain sensitivity, which makes them an interesting sensor material. Based on experimental results and morphological characterization of the material, we develop a model of the electron transport in the film and use it to explain its piezoresistive effect. First we describe a model for the electron transport from particle to particle. The model is then applied in Monte Carlo simulations of the resistance and strain properties of the disordered films that give a first explanation of film properties. The simulations give insights into the origin of the transverse sensitivity and show the influence of various parameters such as particle separation and geometric disorder. An important influence towards larger strain sensitivity is local strain enhancement due to different elastic moduli of metal particles and carbon matrix.
Granular metal thin films have a strain sensitivity much larger than continuous metal films. Experiments at high strain can help reveal their piezoresistive mechanisms. We deposit films of platinum nanoparticles in boron nitride (Pt:BN) as well as platinum particles in aluminum oxide (Pt:Al2O3) on polyimide foil as strain gauges. Under low strain of 0.1%, the films exhibit enhanced gauge factors, k=23 for Pt:BN and k=6 for Pt:Al2O3. Toward higher strain of 1.5%, Pt:BN shows reproducible and linear resistance-strain curves. In contrast, Pt:Al2O3 exhibits anomalies: The resistance-strain curves are highly nonlinear with an increasing slope before reaching saturation. The differential gauge factor versus strain increases from 9 to 9500, and the return curve shows large hysteresis. With scanning electron microscopy unstrained and in situ strained films are compared, Pt:BN shows no changes, whereas in Pt:Al2O3, large cracks develop. The relatively soft BN is less prone to cracks than the hard and brittle Al2O3. Hence, the gauge factor in Pt:BN can still be attributed to an electron tunneling mechanism, whereas Pt:Al2O3 becomes dominated by the influence of cracks. A model is presented, and we argue that the reproducible opening and closing of these cracks leads to the gigantic resistance increases at high strain.
Sputter-deposited thin films of pure chromium and of chromium with small amounts of nitrogen are characterized regarding their electrical resistivity and strain dependence, i.e., piezoresistivity. They show a temperature dependent piezoresistive effect with gauge factors ranging approximately from 10 to 20. Related to this effect, they exhibit signs of a paramagnetic–antiferromagnetic transition at temperatures of 420 K and higher. For characterization, resistivity is measured at different strain levels: in a bending setup with a fixed radius and in a four-point bending system with reference strain gauges. Several parameter series of the sputter deposition of pure Cr films show that the higher gauge factor is correlated to a higher temperature coefficient of resistivity (TCR). The addition of nitrogen extends the range of TCR toward negative values, with gauge factors still in the same range as pure Cr. A Cr–N strain gauge is characterized and shows a linear, low-hysteresis strain–resistivity effect as well as a relatively large transverse sensitivity. Resistivity and gauge factor of one Cr and one Cr–N sample are measured from room temperature up to 600 K. These films have a resistivity anomaly indicating an antiferromagnetic ordering temperature [Formula: see text] that is much higher than in bulk Cr. The gauge factor has a maximum near [Formula: see text] and falls to small values at higher temperatures. The results indicate that the piezoresistivity of Cr and Cr-rich films is coupled to their spin-density wave (SDW) antiferromagnetism. Since the SDW state is known to be tunable through alloying, internal stress, and crystallinity, it appears that piezoresistivity can be influenced by these parameters as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.