a b s t r a c t a r t i c l e i n f oParaoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated serum enzyme thought to make a major contribution to the antioxidant capacity of the lipoprotein. In previous studies, we proposed that HDL promoted PON1 secretion by transfer of the enzyme from its plasma membrane location to HDL transiently anchored to the hepatocyte. This study examined whether PON1 can be transferred into cell membranes and retain its enzymatic activities and functions. Using Chinese hamster ovary and human endothelial cells, we found that recombinant PON1 as well as PON1 associated with purified human HDL was freely exchanged between the external medium and the cell membranes. Transferred PON1 was located in the external face of the plasma membrane of the cells in an enzymatically active form. The transfer of PON1 led to a gain of function by the target cells, as revealed by significantly reduced susceptibility to oxidative stress and significantly increased ability to neutralize the bacterial virulence agent 3-oxo-C 12 -homoserine lactone. The data demonstrate that PON1 is not a fixed component of HDL and suggest that the enzyme could also exert its protective functions outside the lipoprotein environment. The observations may be of relevance to tissues exposed to oxidative stress and/or bacterial infection.
Insulin resistance appears to be the primary determinant of the modifications to VLDL subfraction concentrations. Our results suggest a continuum of impaired insulin action on VLDL, ranging from that in healthy persons to that in patients with type 2 diabetes, in which obese patients occupy a transition state. Insulin resistance may also play a role in detrimental modifications to the LDL profile by allowing the development of hypertriglyceridemia.
Enzyme inactivation giving rise to modulated activity per unit mass of peptide is not a major contributor to pathological effects of disease on serum paraoxonase-1 status. The C--107T polymorphism and serum apolipoprotein AI have major impacts individually on SP and also provide an example of gene-environment interaction to modulate such activities. These effects accentuate the differences between--107C and--107T allele carriers in terms of serum paraoxonase-1 status. The data underline the complexity of the factors that determine serum paraoxonase-1 status and suggest that the latter would benefit from therapeutic modulation of serum high density lipoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.