This paper presents best practices for conducting survey research using Amazon Mechanical Turk (MTurk). Readers will learn the benefits, limitations, and trade-offs of using MTurk as compared to other recruitment services, including SurveyMonkey and Qualtrics. A synthesis of survey design guidelines along with a sample survey are presented to help researchers collect the best quality data. Techniques, including SPSS and R syntax, are provided that demonstrate how users can clean resulting data and identify valid responses for which workers could be paid.
This paper presents best practices for conducting survey research using Amazon Mechanical Turk (MTurk). Readers will learn the benefits, limitations, and trade-offs of using MTurk as compared to other recruitment services, including SurveyMonkey and Qualtrics. A synthesis of survey design guidelines along with a sample survey are presented to help researchers collect the best quality data. Techniques, including SPSS and R syntax, are provided that demonstrate how users can clean resulting data and identify valid responses for which workers could be paid.
Purpose Regression discontinuity (RD) design is a sophisticated quasi-experimental approach used for inferring causal relationships and estimating treatment effects. This paper aims to educate human resource development (HRD) researchers and practitioners on the implementation of RD design as an ethical alternative for making causal claims about training interventions. Design/methodology/approach To demonstrate the key features of RD designs, a simulated data set was generated from actual pre-test and post-test diversity training scores of 276 participants from three organizations in the USA. Parametric and non-parametric analyses were conducted, and graphical presentations were produced. Findings This study found that RD design can be used for evaluating training interventions. The results of the simulated data set yielded statistically significant results for the treatment effects, showing a positive causal effect of the training intervention. The analyses found support for the use of RD models with retrospective training intervention data, eliminating ethical concerns from random group assignment. The results of the non-parametric model provided evidence of the plausibility of finding the right balance between precision of estimates and generalizable results, making it an alternative to experimental designs. Practical implications This study contributes to the HRD field by explicating the implementation of a sophisticated, statistical tool to strengthen causal claims, contributing to an evidence-based HRD approach to practice and providing the R syntax for replicating the analyses contained herein. Originality/value Despite the growing number of scholarly articles being published in HRD journals, very few have used experimental or quasi-experimental design approaches. Therefore, a very limited amount of research has been devoted to uncovering causal relationships.
This chapter presents an introduction to crowdsourcing for survey participant recruitment. It also discusses best practices and ethical considerations for conducting survey research using Amazon Mechanical Turk (MTurk). Readers will learn the benefits, limitations, and trade-offs of using MTurk as compared to other recruitment services, including SurveyMonkey and Qualtrics. A synthesis of survey design guidelines along with a sample survey are presented to help researchers collect the best quality data. Techniques, including SPSS and R syntax, are provided that demonstrate how users can clean resulting data and identify valid responses for which workers could be paid. An overview and syntax for conducting longitudinal studies is provided as well.
This chapter presents an introduction to crowdsourcing for survey participant recruitment. It also discusses best practices and ethical considerations for conducting survey research using Amazon Mechanical Turk (MTurk). Readers will learn the benefits, limitations, and trade-offs of using MTurk as compared to other recruitment services, including SurveyMonkey and Qualtrics. A synthesis of survey design guidelines along with a sample survey are presented to help researchers collect the best quality data. Techniques, including SPSS and R syntax, are provided that demonstrate how users can clean resulting data and identify valid responses for which workers could be paid. An overview and syntax for conducting longitudinal studies is provided as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.