Artificial intelligence (AI)-based diagnostic algorithms have achieved ambitious aims through automated image pattern recognition. For neurological disorders, this includes neurodegeneration and inflammation. Scalable imaging technology for big data in neurology is optical coherence tomography (OCT). We highlight that OCT changes observed in the retina, as a window to the brain, are small, requiring rigorous quality control pipelines. There are existing tools for this purpose. Firstly, there are human-led validated consensus quality control criteria (OSCAR-IB) for OCT. Secondly, these criteria are embedded into OCT reporting guidelines (APOSTEL). The use of the described annotation of failed OCT scans advances machine learning. This is illustrated through the present review of the advantages and disadvantages of AI-based applications to OCT data. The neurological conditions reviewed here for the use of big data include Alzheimer disease, stroke, multiple sclerosis (MS), Parkinson disease, and epilepsy. It is noted that while big data is relevant for AI, ownership is complex. For this reason, we also reached out to involve representatives from patient organizations and the public domain in addition to clinical and research centers. The evidence reviewed can be grouped in a five-point expansion of the OSCAR-IB criteria to embrace AI (OSCAR-AI). The review concludes by specific recommendations on how this can be achieved practically and in compliance with existing guidelines.
This work summarizes the research related to digital speech signal processing with recurrence quantification analysis (RQA) applied to voice disorder assessment. The main motivation for these studies is the fact that RQA is able to exploit the nonlinear dynamical nature of the speech production system. Due to the use of recurrence quantification measures to represent the behavior of speech signals, promising results were obtained in the characterization and classification of laryngeal pathologies and voice disorders. These contributions may help one to evaluate the usability and efficiency of RQA in vocal disorder assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.