For engineering applications, human comfort in the built environment depends on several objective aspects that can be mathematically controlled and limited to reference performance indicators. Typical examples include structural, energy and thermal issues, and others. Human reactions, however, are also sensitive to a multitude of aspects that can be associated with design concepts of the so-called “emotional architecture”, through which subjective feelings, nervous states and emotions of end-users are evoked by constructional details. The interactions of several objective and subjective parameters can make the “optimal” building design challenging, and this is especially the case for new technical concepts, constructional materials and techniques. In this paper, a remote experimental methodology is proposed to explore and quantify the prevailing human reactions and psychological comfort trends for building occupants, with a focus on end-users exposed to structural glass environments. Major advantages were taken from the use of virtual visual stimuli and facial expression automatic recognition analysis, and from the active support of 30 volunteers. As shown, while glass is often used in constructions, several intrinsic features (transparency, brittleness, etc.) are responsible for subjective feelings that can affect the overall psychological comfort of users. In this regard, the use of virtual built environments and facial expression analysis to quantify human reactions can represent an efficient system to support the building design process.
Structural glass beams and fins are largely used in buildings, in the form of primary load-bearing members and bracing systems for roof or facade panels. Several loading and boundary conditions can be efficiently solved by means of bonded composites that involve the use of laminated glass sections. Additionally, the so-obtained glass members are often characterized by high slenderness. To this aim, several literature studies were dedicated to the lateral–torsional buckling (LTB) behavior of laterally unrestrained (LU) glass elements, with the support of full-scale experiments, analytical models, or finite element (FE) numerical investigations. Standardized design recommendations for LU glass members in LTB are available for designers. However, several design issues still require “ad hoc” (and often expensive) calculation studies. In most of the cases, for example, the mechanical interaction between the structural components to verify involves various typologies of joints, including continuous sealant connections, mechanical point fixings, or hybrid solutions. As a result, an accurate estimation of the theoretical LTB critical moment for such a kind of laterally restrained (LR) element represents a first key issue toward the definition and calibration of generalized design recommendations. Careful consideration should be spent for the description of the intrinsic features of materials in use, as well as for a combination of geometrical and mechanical aspects (i.e., geometry, number, position of restraints, etc.). In this paper, the attention is focused on the calculation of the elastic critical buckling moment of LR glass beams in LTB. Existing analytical approaches of the literature (mostly developed for steel constructional members) are briefly recalled. An additional advantage for extended parametric calculations is then taken from finite element (FE) numerical analyses, which are performed via the LTBeam or the ABAQUS software codes. The actual role and the effect of discrete mechanical restraints are, thus, explored for selected configurations of practical interest. Finally, the reliability of simplified calculation approaches is assessed.
In engineering applications, human comfort fulfillment is challenging because it depends on several aspects that can be mathematically controlled and optimized, like in case of structural, energy, or thermal issues, and others. Major troubles can indeed derive from combined human reactions, which are related to a multitude of aspects. The so-called “emotional architecture” and its nervous feelings are part of the issue. The interaction of objective and subjective parameters can thus make the “optimal” building design complex. This paper presents a pilot experimental investigation developed remotely to quantify the reactions and nervous states of 10 volunteers exposed to structural glass environments. As known, intrinsic material features (transparency, brittleness, etc.) require specific engineering knowledge for safe mechanical design but can in any case evoke severe subjective feelings for customers, thus affecting their psychological comfort and hence behaviour and movements. This study takes advantage of static/dynamic Virtual Reality (VR) environments and facial expression analyses, with Artificial Intelligence tools that are used to measure both Action Units (AUs) of facial microexpressions and optical heart rate (HR) acquisitions of volunteers exposed to VR scenarios. As shown, within the limits of collected records, the postprocessing analysis of measured signals proves that a rather good correlation can be found for measured AUs, HR data trends, and emotions under various glazing stimuli. Such a remote experimental approach could be thus exploited to support the early design stage of structural glass members and assemblies in buildings.
Glass material is largely used in buildings and facilities due to various motivations. Besides, glass still represents a vulnerable component for building occupants. Careful attention is required especially for glass elements that may be subjected to extreme design loads, such as impact, vibrations, etc. Among various approaches and techniques to prevent danger for people in case of glass breakage, multilayer antishatter safety films (ASFs) are commercially available for the retrofit of existing monolithic glass members. In the present research study, a multistep experimental program is presented to obtain the characterization of key input mechanical parameters that are required for the numerical analysis of glass elements protected by ASFs. Relevant characteristics are derived for the definition of an equivalent material and monolithic tape able to reproduce the ASF experimental outcomes. On the side of experiments, artificially aged specimens (healing process) are investigated. A major advantage is taken from small-scale peel and tensile tests on ASF samples, as well as Operational Modal Analysis (OMA) techniques for nondestructive vibration measurements on preliminary fractured specimens of ASF-bonded glass elements. Efficient Finite Element (FE) numerical models calibrated with the support of experimental data and Cohesive Zone Modelling (CZM) techniques are presented for discussion of comparative results, giving evidence of rather good estimates and possible extension of the multistep experimental procedure.
Anti-shatter safety films (ASFs) are often used for structural glass applications. The goal is to improve the response of monolithic elements and prevent fragments from shattering. Thus, the main reason behind their use is the possibility to upgrade safety levels against the brittle failure of glass and minimize the number of possible injuries. However, the impact response of glass elements bonded with Polyethylene terephthalate (PET)-films and pressure sensitive adhesives (PSAs) still represents a research topic of open discussion. Major challenges derive from material characterization and asymmetrical variability under design loads and ageing. In particular, the measurement of interface mechanical characteristics for the adhesive layer in contact with glass is a primary parameter for the ASF choice optimization. For this reason, the present paper presents an experimental campaign aimed at calibrating some basic mechanical parameters that provide the characterization of constitutive models, such as tensile properties (yielding stress and Young modulus) for PET-film and adhesive properties for PSA (energy fracture and peel force). In doing so, both tensile tests for PET-films and peeling specimens are taken into account for a commercially available ASF, given that the peeling test protocol is one of most common methods for the definition of adhesion properties. Moreover, an extensive calibration of the Finite Element (FE) model is performed in order to conduct a parametric numerical analysis of ASF bonded glass solutions. Furthermore, a Kinloch approach typically used to determine the fracture energy of a given tape by considering a variable peel angle, is also adopted to compare the outcomes of calibration analyses and FE investigations on the tested specimens. Finally, a study of the effect of multiple aspects is also presented. The results of the experimental program and the following considerations confirm the rate dependence and ageing dependence in peel tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.