Along with the development of distance education, emerges the demand for virtual environments as the automated evaluation studies of essays that has already produced promising results. However, when dealing with short answers, replicating the decisions of a human grader is still a challenge, as the portability of essay evaluation techniques to short answers has not produced results with the same level of accuracy. In this sense, the present paper aims to foster the development of studies in the field of automated evaluation of short discursive answers. The related works presented three main approaches: textto-text similarity, knowledge-based similarity that rely on synonym dictionary and corpus-based similarity that rely on a related corpus. The present study has employed an n-gram based similarity and a categorization process applied to three sets of answers to questions in Portuguese language: two of them (Biology and Geography) obtained from an admission process to higher education and the third (Philosophy) from a virtual learning environment. The employed method was comprised of a five-stage pipeline architecture: corpus selection, preprocessing, variable generation, classification and accuracy validation. In these three corpora, several similarity measurements and distances resulting from the unigrams/bigrams combination were explored. During the classification stage, two methods were used: multiple linear regression and K-Nearest Neighbors (KNN). At the same time some research questions were revised leading to meaningful findings. As for the system efficiency regarding the Biology corpus, the accuracy was 84.01 system vs. human compared to 93.85 human vs. human; for the Geography corpus, the accuracy was 86.29 system vs. human compared to 84.93 human vs. human; and for the Philosophy corpus, findings revealed 81.59 accuracy system vs. human. These results, when compared with those obtained from recent experiments produced by other techniques indicate advantages in terms of a simpler method added to good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.