<p class="p1">A pesar de la relevancia médica y el impacto económico en los sistemas de salud, las enfermedades cardiovasculares, tales como infartos cardíacos y accidentes cerebrovasculares, siguen siendo la principal causa de morbilidad y mortalidad en los países en vías de desarrollo. Esto se debe a que las bases estructurales y funcionales de los procesos de formación de los coágulos sanguíneos o trombos solo se conocen de forma incompleta. La trombina juega un papel esencial en estos procesos y los fundamentos atómico-moleculares de su interacción con otros factores que participan en el proceso de coagulación son poco conocidos, en particular el reconocimiento de importantes sustratos como los factores V y VIII, así como el receptor de plaquetas PAR1. Dada la importancia de estos factores, en esta investigación se produjeron fragmentos del factor VIII humano (FVIII) y se caracterizaron bioquímicamente para realizar ensayos de cristalización de complejos FVIII·Trombina. Para ello, (1) se sobreexpresaron heterólogamente los conectores ácidos entre los dominios del factor VIII (denominados FVIIIa1, FVIIIa2 y FVIIIa3), (2) se purificaron y caracterizaron estos fragmentos recombinantes, (3) se formaron sus complejos con la trombina y (4) se inició la búsqueda de las condiciones de cristalización de estos complejos proteicos. La producción del FVIII, y en particular la determinación de las condiciones en las que crecen cristales del tamaño y calidad apropiados, son un auténtico cuello de botella en los estudios de estructura-función, por ello se considera que la optimización de estos procesos permitirá obtener un mayor número de cristales de proteína de calidad adecuada para futuros estudios de difracción de rayos X.</p>
La implementación de novedosas técnicas biofísicas para análisis de proteínas a escala atómica, tales como la resonancia magnética nuclear de proteínas (RMN) y la cristalografía de rayos X, permiten el estudio de los mecanismos moleculares de interacción entre proteínas de interés y, -en algunos casos-, permite explorar mecanismos alternativos para el diseño de nuevos fármacos. Nuestro grupo ha desarrollado dos líneas de investigación buscando implementar y consolidar dichas técnicas biofísicas, con el objetivo de comprender mejor las interacciones entre sustratos, -como el factor VIII y el receptor de plaquetas PAR1- con la trombina, en los procesos de coagulación sanguínea; y, por otra parte, conocer mejor la actividad funcional de algunas proteínas provenientes de venenos de serpientes. La interacción de regiones conectoras del FVIII humano con la trombina fue estudiada utilizando la técnica de RMN, a través de ensayos mono, bi y tri-dimensionales, donde los conectores del FVIII humano fueron marcados con los isótopos 1H, 13C y 15N empleando sobreexpresión heteróloga en cepas de Escherichia coli. Mediante la técnica de cristalografía de rayos X se ha logrado obtener cristales a partir de la generación de complejos de las proteínas recombinantes humanas con la trombina, y se han desarrollado una serie de mutantes del FVIII y PAR1, para favorecer complejos intermediaros más estables con la trombina. Por último, se ha trabajado con una metaloproteinasa del veneno de la serpiente Crotalus simus y una fosfolipasa de Botriechis schelegelii. De esta última se obtuvo una estructura 3D a una alta resolución (~2.5 Å).
Las enfermedades cardiovasculares representan una de las principales causas de morbilidad y mortalidad a nivel mundial, lo que se traduce en un fuerte impacto económico en el sector salud. El factor VIII (FVIII) es un cofactor esencial en los procesos hemostáticos que participa en la formación del coágulo ante alguna señal de daño vascular. La proteasa trombina es el principal activador fisiológico del FVIII, pero los mecanismos moleculares de reconocimiento del FVIII por la trombina y la formación de los complejos transitorios Michaelis-Menten correspondientes aún no se han descrito en detalle. La cristalografía de rayos X es una técnica que permite resolver la estructura 3D de complejos proteicos, pero requiere la cristalización previa de la muestra a estudiar. Con el objetivo de favorecer la formación de cristales del FVIIIa3 humano (residuos Glu1649-Arg1689) acomplejado con la trombina, se realizó mutagénesis dirigida para generar los doble-mutantes FVIIIa3 (R1689Q, G1690P) y FVIIIa3 (R1689G, G1690P). Estos fragmentos fueron sobreexpresados de forma heteróloga y purificados, obteniendo rendimientos de ~1.5 mg por cada litro de cultivo bacteriano. Esto permitió generar los complejos proteicos FVIIIa3 (R1689Q, G1690P)•trombina y FVIIIa3 (R1689G, G1690P)•trombina en cantidades suficientes para explorar sus espacios de solubilidad de forma extensiva. En total, en cada caso se evaluaron entre 630 y 820 condiciones de cristalización distintas. A partir de esta búsqueda inicial se obtuvo algún tipo de precipitado cristalino en 22 condiciones, 10 de las cuales lograron ser optimizadas para obtener monocristales de alta calidad para posteriores ensayos de difracción con rayos X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.