The underwater image processing area has received considerable attention within the last decades, showing important achievements. In this paper we review some of the most recent methods that have been specifically developed for the underwater environment. These techniques are capable of extending the range of underwater imaging, improving image contrast and resolution. After considering the basic physics of the light propagation in the water medium, we focus on the different algorithms available in the literature. The conditions for which each of them have been originally developed are highlighted as well as the quality assessment methods used to evaluate their performance.
A computational neuroscience framework is proposed to better understand the role and the neuronal correlate of spatial attention modulation in visual perception. The model consists of several interconnected modules that can be related to the different areas of the dorsal and ventral paths of the visual cortex. Competitive neural interactions are implemented at both microscopic and interareal levels, according to the biased competition hypothesis. This hypothesis has been experimentally confirmed in studies in humans using functional magnetic resonance imaging (fMRI) techniques and also in single-cell recording studies in monkeys. Within this neuro-dynamical approach, numerical simulations are carried out that describe both the fMRI and the electrophysiological data. The proposed model draws together data of different spatial and temporal resolution, as are the above-mentioned imaging and single-cell results.
The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images.
Electron capture from diatomic molecular targets by the impact of bare ions is studied at high collision velocities. Different distorted-wave models, which take account of the long-range Coulombic behavior of perturbative potentials, are introduced here. Impact-parameter probabilities and singledifferential cross sections, depending on the alignment of the intermolecular axis, are studied for H++H&+ collisions. Interference patterns characteristic of scattering from the two molecular centers associated with each one of the nuclei of the target are obtained. Total cross sections, summed over all possible alignments of the intermolecular axis, are also calculated for the H +H& system for which experimental data exist.PACS number(s): 34.70.+ e
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.