This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.
In this study we examined the extracellular enzymatic activity of two white rot fungi (Phanerochaete chrysosporium and Trametes versicolor) in a soil extract broth in relation to differential degradation of a mixture of different concentrations (0-30 p.p.m.) of simazine, dieldrin and trifluralin under different osmotic stress (-0.7 and -2.8 MPa) and quantified enzyme production, relevant to P and N release (phosphomonoesterase, protease), carbon cycling (beta-glucosidase, cellulase) and laccase activity, involved in lignin degradation. Our results suggest that T. versicolor and P. chrysosporium have the ability to degrade different groups of pesticides, supported by the capacity for expression of a range of extracellular enzymes at both -0.7 and -2.8 MPa water potential. Phanerochaete chrysosporium was able to degrade this mixture of pesticides independently of laccase activity. In soil extract, T. versicolor was able to produce the same range of enzymes as P. chrysoporium plus laccase, even in the presence of 30 p.p.m. of the pesticide mixture. Complete degradation of dieldrin and trifluralin was observed, while about 80% of the simazine was degraded regardless of osmotic stress treatment in a nutritionally poor soil extract broth. The capacity of tolerance and degradation of high concentrations of mixtures of pesticides and production of a range of enzymes, even under osmotic stress, suggest potential bioremediation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.