It has been suggested that members of HSP families represent the surface target of immune responses leading to tumor rejection in mice. Here we report that tumor cells, compared with normal cells, constitutively expressed 2- to 10-fold higher levels of intracellular HSP90. Moreover, in the absence of environmental stress, 2 lines (out of 6) expressed the "inducible" HSP72, which was also detectable in fresh tumor cells. HSP72 expression was not regulated during the cell cycle, in contrast with what has been observed with normal cells. Both HSP90 and HSP72 proteins exhibited a heterogeneous pattern of intracellular distribution in most cells, HSP72 being confined mainly to the nuclear compartment. Finally, we could detect both HSP90 and, to a lesser extent, HSP72 (that are generally believed to be located intracellularly) at the surface of some tumor cell lines. We conclude that tumor cells differ from normal cells in their pattern of HSP expression; this might imply a role of HSPs in eliciting an immune response against cancer.
In pancreatic ductal adenocarcinomas (PDAC), lymphoid infiltrates, comprised mainly of Th2 cells, predict a poor survival outcome in patients. IL4 signaling has been suggested to stabilize the Th2 phenotype in this setting, but the cellular source of IL4 in PDAC is unclear. Here, we show that basophils expressing IL4 are enriched in tumor-draining lymph nodes (TDLN) of PDAC patients. Basophils present in TDLNs correlated significantly with the Th2/Th1 cell ratio in tumors, where they served as an independent prognostic biomarker of patient survival after surgery. Investigations in mouse models of pancreatic cancer confirmed a functional role for basophils during tumor progression. The recruitment of basophils into TDLN relied partly upon the release of chemokine CCL7/MCP3 by "alternatively activated" monocytes, whereas basophil activation was induced by T-cell-derived IL3. Our results show how basophils recruited and activated in TDLNs under the influence of the tumor microenvironment regulate tumor-promoting Th2 inflammation in PDAC, helping in illuminating a key element of the immune milieu of pancreatic cancer.
Co-expression of B7-1 and ICAM-1 on tumors is required for rejection and the establishment of a memory responseAlthough the transfection of B7-1 cDNA into a few mouse tumor cell lines can induce anti-tumor T cell immunity, its expression alone is ineffective in many other tumor cell lines tested. We were interested to study what factors limit B7-1 co-stimulatory activity, and decided to investigate whether B7-1 requires the cooperation of ICAM-1 to provide the minimal co-stimulatory signal for establishing an efficient anti-tumor immunity. We show that the transfection of B7-1 cDNA into three ICAM-1' (plasmocytoma J558L, T lymphomas EL-4 and M A ) , but not into two ICAM-1-tumor cell lines (adenocarcinoma TS/A and melanoma B16.F1), is sufficient to induce their complete rejection in syngeneic mice. The expression of ICAM-1 is necessary for the rejection of the B7 expressing tumors, since the primary response elicited by B7-1+ EL-4 and RMA clones expressing reduced levels of ICAM-1 is severely reduced. Furthermore, super-transfection of ICAM-1 cDNA into B7-1+ adenocarcinoma and melanoma clones optimizes their primary rejection. Histologic examination of transfected tumors reveals that B7-1 and ICAM-1 exert a potent pro-inflammatory activity. The intra-tumor infiltration is composed of both eosinophils and lymphomonocytes, and is already massive 5 days after the tumor challenge. The primary rejection of the B7-l+ICAM-lf tumors depends critically on CD8+ T cells, natural killer cells and granulocytes, but is independent of CD4+ T cells. Remarkably, in addition to its effects on the early phases of the immune response, the co-expression of ICAM-1 and B7-1 on tumors is also necessary for the efficient induction of a memory response. In fact, only the primary challenge with B7-1+, ICAM-1+ tumor cells protects the majority of the mice from a second injection of parental tumor cells. Collectively, our findings indicate that B7-1 and ICAM-1 are fundamental components for triggering the primary rejection of tumors and establishing a protective memory response.These findings may help to define new strategies for the rational application of co-stimulation in tumor immunotherapy.
We have studied the effects of a life-long antigen stimulation on the clonal heterogeneity of human peripheral T cell subsets, as defined by their CD45 isoform expression. CD4+ or CD8+ T cells were obtained from healthy donors ranging in age from 20 to 100 years, and sorted into CD45RA+ and CD45RO+ populations. A modified PCR-heteroduplex analysis was then used to directly compare the TCR Vbeta clonal make up of either compartment pair. We find that the CD4+ T cell repertoire remains largely polyclonal throughout life, since CD4+ expanded clones are rare and accumulate predominantly in the CD45RO+ compartment of exceptionally old donors (100 years old). In contrast, the CD8+ T cell subset contains expanded clones which are already detectable in young adults and become very frequent in 70- to 75-year-old donors in both CD45RA+ and CD45RO+ compartments analyzed. Interestingly, some expanded clones are detectable in the CD45RA+ or in both CD45RA+ and CD45RO+ compartments of either CD4+ or CD8+ T cells. These results indicate that the age-dependent accumulation of expanded clones starts earlier and is more pronounced in the CD8+ than in the CD4+ T cell subset, reinforcing the concept that clonal expansion in the two subsets is controlled by substantially different mechanisms. Furthermore, whereas the finding of expanded CD45RO+ T cell clones is explained by antigen-driven proliferation, the detection of expanded clones in the CD45RA+ or in both CD45RA+ and CD45RO+ compartments would support the hypothesis of reversion from the CD45RO+ to the CD45RA+ phenotype after antigen encounter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.