Background and objectives To date, it is unclear whether antigen matching is effective in reducing antibody development and whether transfusing blood from non‐Caucasian donors reduces alloimmunization in sickle cell disease patients (SCP). This study was designed to evaluate the effectiveness of an antigen‐matching strategy supplied by a mixed donor population, in reducing alloimmunization in SCPs. Methods Eighty SCPs transfused with C‐, E‐ and K‐matched units and 2000 donors were genotyped for the most relevant RBC antigens, and resulting genotypic frequencies were compared. Also, alloantibodies specificity and clinical complications were evaluated in SCPs. Results A high alloimmunization rate was observed despite the prophylaxis protocol (62·1%). The main cause underlying lack of effectiveness was transfusion of non‐matched units in external hospitals. Even though our donor population was ethnically mixed, it still exhibited antigenic differences in relation to SCPs (C and Fya). Frequency of clinical complications was similar between alloimmunized and non‐alloimmunized patients. Conclusions Prospective antigen matching is an unattractive alloimmunization prophylaxis for SCPs if not associated with strategies to minimize the hazards related to transfusions at non‐index hospitals. Even in a highly mixed donor population, antigenic discrepancies in SCPs are high, increasing the risk of antibody development.
Gel microcolumn assay (GMA) is a modified serological technique that has been used for ABO and Rh typing, direct antiglobulin test (DAT), detecting alloantibodies, red cell phenotyping, and other applications. However, for DAT, the role of GMA is controversial. The purpose of this large study was to compare the performance of the conventional tube test (CTT) to GMA for detecting potentially significant antibodies coating red blood cells in vivo. From January 1996 to May 2002, we performed DATs by GMA and CTT on 9,862 blood samples submitted to our reference laboratory, using LISS/Coombs cards (DiaMed-Latino America, Lagoa Santa-MG, Brazil) for GMA and polyspecific and monospecific anti-IgG reagents for CTT. Acid eluates were prepared from all positive DAT samples. The specificity of eluates was determined by GMA. We detected nonconcordant results in 2,079 out of 3,163 positive DATs (65.7%). All of these tests were only positive in GMA. Sensitivity and specificity for DATs was 100% and 83.0% for gel, and 50.7% and 97.8% for tube, respectively. Based on this study GMA showed to be more sensitive than CTT for detecting potentially significant antibodies coating red blood cells in vivo.
Anti-D titration is the first step in the evaluation of the RhD-sensitized patient. Traditionally, anti-D titration has been performed by tube agglutination. Gel microcolumn assay is a method that has gained widespread usage throughout the world, mainly for ABO/Rh typing, unexpected antibody screening and direct antiglobulin tests. As gel assay has become widely used as a routine method to detect red blood cell alloantibodies, a critical anti-D titer needs to be established. Seventy-nine known blood samples with anti-D (titers 1-32) were titrated simultaneously by the conventional tube test and the gel microcolumn assay. Red blood cells (R0r phenotype) were used, with a final concentration of 3% for tube and 0.8% for gel. Serial twofold dilutions (2-2.048) were prepared for each technique, followed by reading in antiglobulin phase. Anti-D titration in the gel microcolumn assay showed significantly higher titers (mean 3.4-fold) than the conventional tube test in all samples studied. Based on these data, it was not possible to determine a critical titer for anti-D titration by the gel microcolumn assay.
IntroduçãoOs antígenos de grupos sanguíneos eritrocitários são estruturas macromoleculares localizados na superfície extracelular da membrana dos eritrócitos podendo ser de natureza carboidrato, proteína ou glicoproteína.1 Nos últimos anos, com o avanço dos estudos moleculares, dos 29 sistemas de grupos sanguíneos reconhecidos pela Sociedade Internacional de Transfusão Sanguínea, 2 os genes codificadores de 28 sistemas foram clonados e sequenciados. 3,4 Até o momento, 989 alelos de 39 genes de grupos sanguíneos foram identificados, 5 o que tem desvendado aspectos sobre a funcionalidade e importância da expressão das proteínas que carregam antígenos na membrana eritrocitária. Esta revisão tem como foco mostrar as funções bioló-gicas potenciais e os aspectos funcionais dos antígenos eritrocitários, que, didaticamente, podem ser classificados em: proteínas estruturais, transporte, receptores/moléculas de adesão, enzimática, complemento, proteínas regulatórias e outras, sendo que um antígeno eritrocitário pode apresentar mais que uma função. (Tabela 1 e Figura 1) Função EstruturalO representante desse grupo é o sistema de grupo sanguíneo Gerbich cujos antígenos estão expressos nas glicoproteínas de membrana tipo I, glicoforinas C e D (GPC e GPD). Ambas são altamente glicosiladas contribuindo para 6 O domínio citoplasmático de GPC/D interage com a proteína 4.1R e com a fosfoproteína 55 constituindo o maior sítio de ligação da base espectrina-actina no complexo de junções da membrana do esqueleto desempenhando função importante na estrutura eritrocitária, na manutenção da forma celular e na estabilidade mecânica da membrana.7 A ausência de ambas as proteínas leva ao raro fenótipo Leach (Ge-2,-3,-4), caracterizado pela estabilidade mecânica reduzida, distorção na forma discóide dos eritrócitos e níveis variados de eliptocitose. 8Além dos eritrócitos, as GPC e GPD estão expressas em fígado fetal, endotélio renal, cerebelo e íleo, porém em menores quantidades e com diferentes níveis de glicosilação; sugere-se que nesses tecidos desempenham funções análogas ao já descrito para linhagem eritróide.A glicoforina C também tem função de receptor (ver em receptor D). Função estrutural e transporte Sistema de Grupo Sanguíneo DiegoOs antígenos do sistema de grupo sanguíneo Diego estão localizados na banda 3, a principal e a mais abundante proteí-na integral na membrana dos eritrócitos com 10 6 cópias por célula. Os resíduos 1-403 da proteína banda 3 formam o domínio citoplasmático N-terminal, que funciona como um ponto de ancoragem para o citoesqueleto da membrana através de interações com as proteínas de membrana periféricas anquirina, 4.1R e 4.2, sendo esta a principal função deste domí-nio.10 Serve também como sítio de ligação para enzimas glicolíticas como gliceraldeído-3-fosfato dehidrogenase, fosfofrutoquinase e aldose, bem como para hemoglobina, catalase e hemicrones. 11Os resíduos 509-911 da banda 3 são responsáveis pelo domínio citoplasmático C-terminal, que atravessa a membrana de 12 a 14 vezes, gerando seis a sete alç...
The strategy of checking D- donors with RHD PCR followed by exclusion of RHD*Ψ allele has proved efficient in identifying weak-D and DEL phenotype in the Brazilian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.