Several families of protein kinases orchestrate the complex events that drive the cell cycle, and their activity is frequently deregulated in hyperproliferative cancer cells. Although several molecules that inhibit cell cycle kinases have been developed and clinically screened as potential anticancer agents, none of these has been approved for commercial use and an effective strategy to specifically control malignant cell proliferation has yet to be established. However, recent genetic and biochemical studies have provided information about the requirement for certain cell cycle kinases by specific tumours and specialized tissue types. Here, we discuss the potential and limitations of established cell cycle kinases as targets in anticancer drug discovery as well as novel strategies for the design of new agents.
A set of thirty-two natural and ten semisynthetic ecdysteroids was assayed in murine 3T3 cells across ten different ecdysteroid receptor (EcR) ligandbinding domains derived from nine arthropod species in an engineered gene switch format. Among the ecdysteroids tested, the most biologically widespread ecdysteroid, 20-hydroxyecdysone (20E), was moderately and consistently potent across the tested EcRs. The most potent ligand-receptor combination (EC 50 = 0.3 nm) was ponasterone A (PoA) actuating the Nephotettix cincticeps EcR switch. The most robust ligand-receptor combination, as measured by potency and efficacy, was PoA actuating either the Bombyx mori EcR or a 'VY' (E274V ⁄ V390I ⁄ Y410E) mutant of Choristoneura fumiferana EcR. Parallel ecdysteroid structure-activity relationships were observed across species; addition of hydroxyl groups at positions 2, 3, 14, 20 and 22 incrementally enhanced potency, whereas hydroxylation at position 25 retarded potency. Nevertheless, several outlier ligand-EcR combinations, such as cyasterone actuating the VY C. fumiferana EcR mutant and canescensterone activating Bemisia argentifolii EcR, exhibited an inversion of relative potency, and therefore lend themselves to construction of orthogonal duplex gene switches. The potency inversion between these two ligand-receptor pairs can be accounted for by steroid-tail contact residues Tyr411 and Met502 in VY C. fumiferana EcR corresponding to two threonines in B. argentifolii EcR. Another potency inversion was also observed with cyasterone operating on the VY mutant of C. fumiferana EcR and polypodine B activating Aedes aegypti EcR. The ecdysteroid-EcR dataset, generated in a non-natural system, nevertheless invites conjecture regarding relative ecdysteroid potencies, plant species distribution of certain phytoecdysteroids, and the role of phytoecdysteroids as chemodefense against relevant insect herbivores.
In this chapter, a range of computational tools for applying QSAR and grouping/read-across methods are described, and their integrated use in the computational assessment of genotoxicity is illustrated through the application of selected tools to two case-study compounds-2-amino-9H-pyrido[2,3-b]indole (AαC) and 2-aminoacetophenone (2-AAP). The first case study compound (AαC) is an environment pollutant and a food contaminant that can be formed during the cooking of protein-rich food. The second case study compound (2-AAP) is a naturally occurring compound in certain foods and also proposed for use as a flavoring agent. The overall aim is to describe and illustrate a possible way of combining different information sources and software tools for genotoxicity and metabolism prediction by means of a simple stepwise approach. The chapter is aimed at researchers and assessors who have a basic knowledge of computational toxicology and some familiarity with the practical use of computational tools. The emphasis is on how to evaluate the data generated by multiple tools, rather than the practical use of any specific tool.
Herbs, herbal extracts, or phytochemicals are broadly used as foods, drugs, and as traditional medicines. These are well regulated in Europe, with thorough controls on both safety and efficacy or validity of health claims. However, the distinction between medicines and foods with health claims is not always clear. In addition, there are several cases of herbal products that claim benefits that are not scientifically demonstrated. This review details the European Union (EU) legislative framework that regulates the approval and marketing of herbal products bearing health claims as well as the scientific evidence that is needed to support such claims. To illustrate the latter, we focus on phytoecdysteroid (PE)-containing preparations, generally sold to sportsmen and bodybuilders. We review the limited published scientific evidence that supports claims for these products in humans. In addition, we model the in silico binding between different PEs and human nuclear receptors and discuss the implications of these putative bindings in terms of the mechanism of action of this family of compounds. We call for additional research to validate the safety and health-promoting properties of PEs and other herbal compounds, for the benefit of all consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.