Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70-120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid-liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 μg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach.
In the current work a racemate of (R)- and (S)-benzylmandelate was separated with a stereoselective polysaccharide-based chiral stationary phase by HPLC. To elucidate the occurring chiral molecular recognition processes in the heterogeneous system used, NMR spectroscopy was chosen under high resolution/magic angle spinning (HR/MAS) NMR conditions in the suspended state. Therefore, and as a proof of concept, a combination of several NMR methods such as spin-lattice relaxation time (T(1)) measurements (T(1)), the saturation transfer difference, and the 2D experiment of the transferred nuclear overhauser enhancement spectroscopy technique were applied. With HR/MAS NMR it is feasible to combine NMR and chromatography to achieve further insights into the separation process.
Gesucht war eine schnelle, robuste HPLC‐Methode, um Inhaltsstoffe in Hustensaft simultan zu bestimmen. Die Trennung der Wirkstoffe Codein, Pseudoefedrin und Guaifenesin durch Umkehrphasen hat sich als optimal erwiesen.
Mit einer automatisierten Online‐Festphasenextraktion ist das Schimmelpilzgift Zearalenon in Speiseöl mit HPLC direkt bestimmbar. Die Probenvorbereitung ist hochselektiv und eignet sich für die Routinekontrolle des EU‐Grenzwerts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.