Laser therapy reduced the inflammatory reaction, induced increased collagen deposition and a greater proliferation of myofibroblasts in experimental cutaneous wounds.
The study of low-level laser therapy upon extracellular matrix elements is important to understand the wound healing process under this agent. However, little is known about the interference of laser light in relation to collagen and elastic fibers. Cutaneous wounds were performed on the back of 72 Wistar rats and a Ga-Al-As low-level laser was punctually applied with different energy densities. The animals were killed after 24, 48, 72 hours and 5, 7 and 14 days. Tissues were stained with hematoxilin-eosin, sirius red fast green and orcein and then analyzed. It was observed that the treated group exhibited larger reduction of edema and inflammatory infiltrate. The treated animals presented a larger expression of collagen and elastic fibers, although without statistical significance (p > 0.05). Treatment with a dosage of 4 J/cm² exhibited more expressive results than that with 8 J/cm². In this study, the authors concluded that low-level laser therapy contributed to a larger expression of collagen and elastic fibers during the early phases of the wound healing process.
DESCRIPTORS:Lasers; Laser therapy, low-level; Wound healing; Collagen.
RESUMO:O estudo da terapia a laser de baixa densidade de energia sobre os diversos constituintes da matriz extracelular é crucial para o entendimento do processo cicatricial sob esse agente. Todavia, pouco se sabe sobre a interferên-cia do laser em relação às fibras colágenas e elásticas. Realizaram-se ferimentos cutâneos padronizados no dorso de setenta e dois ratos Wistar e, em seguida, aplicação pontual do raio laser de baixa potência do tipo Arseneto de Gá-lio-Alumínio (Ga-Al-As) com diferentes densidades de energia. Os animais foram sacrificados com 24, 48 e 72 horas e aos 5, 7 e 14 dias. Procedeu-se à análise das secções teciduais coradas por hematoxilina-eosina, sírius vermelho e orceína. Observou-se, que nos grupos submetidos à terapia a laser, houve maior redução do edema e infiltrado inflamatório. Os animais tratados apresentaram uma maior expressão de fibras colágenas e elásticas, embora sem significân-cia estatística (p > 0,05). No tratamento com a fluência de 4 J/cm² observaram-se melhores resultados do que naquele em que foi utilizada a fluência de 8 J/cm². Neste estudo, pôde-se concluir que o laser contribuiu para uma maior expressão de fibras colágenas e elásticas durante o processo cicatricial.
DESCRITORES:Lasers; Terapia a laser de baixa intensidade; Cicatrização de feridas; Colágeno.
The aim of the present investigation was to evaluate the angiogenesis on dorsal cutaneous wounds in a rodent model treated with λ660 nm laser light. New vessel formation is a multistep process involving vessel sprouting, endothelial cell migration, proliferation and tube formation. Although several in vivo studies have shown that laser phototherapy influences tissue repair, a fully understanding of angiogenesis mechanisms are not yet known. Twenty-four young adult male Wistar rats weighing between 200 and 250 g were used. Under general anesthesia, one excisional wound was created on the dorsum of each animal and they were randomly distributed into two groups: one control and one treated with laser (λ660 nm, 16 mW, 10 J/cm2). Each group was subdivided into three subgroups according to the animal death timing (2, 4 and 6 days). Laser irradiation started immediately after surgery and was repeated every other day during the experiment and marked with Sirius Red, specific for collagen, and immunomarked with anti-TGF-β and anti-von Willebrand factor. Marked sections underwent histological analysis by light microscopy and the mean area of the wound of each animal was calculated and analyzed by ANOVA and Tukey's test (α=0.05). Although at some death periods, collagen expression and number of blood vessels on irradiated animals were higher than in the control ones, no significant differences were found at any time in relation to TGF-β expression (p>0.05). It was concluded that laser treatment (λ660 nm) contributed to increase angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.