LAMA is a classical planning system based on heuristic forward search. Its core feature is the use of a pseudo-heuristic derived from landmarks, propositional formulas that must be true in every solution of a planning task. LAMA builds on the Fast Downward planning system, using finite-domain rather than binary state variables and multi-heuristic search. The latter is employed to combine the landmark heuristic with a variant of the well-known FF heuristic. Both heuristics are cost-sensitive, focusing on high-quality solutions in the case where actions have non-uniform cost. A weighted A* search is used with iteratively decreasing weights, so that the planner continues to search for plans of better quality until the search is terminated. LAMA showed best performance among all planners in the sequential satisficing track of the International Planning Competition 2008. In this paper we present the system in detail and investigate which features of LAMA are crucial for its performance. We present individual results for some of the domains used at the competition, demonstrating good and bad cases for the techniques implemented in LAMA. Overall, we find that using landmarks improves performance, whereas the incorporation of action costs into the heuristic estimators proves not to be beneficial. We show that in some domains a search that ignores cost solves far more problems, raising the question of how to deal with action costs more effectively in the future. The iterated weighted A* search greatly improves results, and shows synergy effects with the use of landmarks
Abstract. We introduce a novel stochastic local search algorithm for the vertex cover problem. Compared to current exhaustive search techniques, our algorithm achieves excellent performance on a suite of problems drawn from the field of biology. We also evaluate our performance on the commonly used DIMACS benchmarks for the related clique problem, finding that our approach is competitive with the current best stochastic local search algorithm for finding cliques. On three very large problem instances, our algorithm establishes new records in solution quality.
Heuristic forward search is the dominant approach to satisficing planning to date. Most successful planning systems, however, go beyond plain heuristic search by employing various search-enhancement techniques. One example is the use of helpful actions or preferred operators, providing information which may complement heuristic values. A second example is deferred heuristic evaluation, a search variant which can reduce the number of costly node evaluations. Despite the wide-spread use of these search-enhancement techniques however, we note that few results have been published examining their usefulness. In particular, while various ways of using, and possibly combining, these techniques are conceivable, no work to date has studied the performance of such variations. In this paper, we address this gap by examining the use of preferred operators and deferred evaluation in a variety of settings within best-first search. In particular, our findings are consistent with and help explain the good performance of the winners of the satisficing tracks at IPC 2004 and 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.