Lactobacilli species are an effective biotherapeutic alternative against bacterial infections and intestinal inflammatory disorders. However, it is important to evaluate their beneficial properties, before considering them as probiotics for medical use. In this study we evaluated some probiotic properties of Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLSD, Lactobacillus helveticus IMAU70129, and Lactobacillus casei IMAU60214 previously isolated from dairy products and as control Lactobacillus casei Shirota. Experimental evaluations revealed that all strains expressed hydrophobicity (25–40%), auto-aggregation (55–60%), NaCl tolerance (1–4%), adhesion to Caco-2 cells (25–33%), partial inhibition on adherence of Escherichia coli ATCC 35218, Salmonella Typhimurium ATCC 14028, and Staphylococcus aureus ATCC 23219. Cell-free supernatants (CFS) of Lactobacilli also inhibit growth of these pathogens. In immunomodulatory properties a reduction of interleukin-8 (IL-8) and nitric oxide (NO) release was observed in assays with Caco-2 cells stimulated with interleukin-1β (1 ng/mL), or lipopolysaccharide (0.1 µg/mL). On the other hand, the damage induced to Caco-2 cells with sodium dodecyl sulfate (SDS) was attenuated when the cultured cells were pretreated with L. rhamnosus KLDS, L. helveticus IMAU70129 and L. casei IMAU60214. These Lactobacilli possess probiotic properties determined by both an antagonistic activity on pathogenic bacteria and reduction in the inflammatory response of cells treated with SDS, a pro-inflammatory stimulant.
Cytarabine is one of the most effective antineoplastic agents among those used for the treatment of acute myeloid leukemia. However, some patients develop resistance and/or severe side effects to the drug, which may interfere with the efficacy of the treatment. The polymorphisms of some Ara-C metabolizing enzymes seem to affect outcome and toxicity in AML patients receiving cytarabine. We conducted this study in a cohort of Mexican pediatric patients with AML to investigate whether the polymorphisms of the deoxycytidine kinase and cytidine deaminase enzymes are implicated in clinical response and toxicity. Bone marrow and/or peripheral blood samples obtained at diagnosis from 27 previously untreated pediatric patients with de novo AML were processed for genotyping and in vitro chemosensitivity assay, and we analyzed the impact of genotypes and in vitro sensitivity on disease outcome and toxicity. In the multivariate Cox regression analysis, we found that age at diagnosis, wild-type genotype of the CDA A79C polymorphism, and wild-type genotype of the dCK C360G polymorphism were the most significant prognostic factors for predicting the risk of death.
There is evidence that high circulating levels of IL-6 and IL-8 are markers of a poor prognosis in various types of cancer, including NB. The participation of these cytokines in the tumor microenvironment has been described to promote progression and metastasis. Our objective was to evaluate the prognostic role of genetic polymorphisms and serum levels of IL-6 and IL-8 in a cohort of Mexican pediatric patients with NB. The detection of the SNPs rs1800795 IL-6 and rs4073 and rs2227306 IL-8 was carried out by PCR-RFLP and the levels of cytokines were determined by the ELISA method. We found elevated circulating levels of IL-8 and IL-6 in NB patients compared to the control group. The genotype frequencies of the rs1800795 IL-6 and rs4073 IL-8 variants were different between the patients with NB and the control group. Likewise, the survival analysis showed that the GG genotypes of rs1800795 IL-6 (p = 0.014) and AA genotypes of rs4073 IL-8 (p = 0.002), as well as high levels of IL-6 (p = 0.009) and IL-8 (p = 0.046), were associated with lower overall survival. We confirmed the impact on an adverse prognosis in a multivariate model. This study suggests that the SNPs rs1800795 IL-6 and rs4073 IL-8 and their serum levels could be promising biomarkers of a poor prognosis, associated with overall survival, metastasis, and a high risk in Mexican children with NB.
Enteroaggregative Escherichia coli (EAEC) and enterohemorrhagic E. coli (EHEC) are E. coli pathotypes associated with unmanageable diarrhea in children and adults. An alternative to the treatment of infections caused by these microorganisms is the use of the bacteria of the Lactobacillus genus; however, the beneficial effects on the intestinal mucosa are specific to the strain and species. The interest of this study consisted of analyzing the coaggregation properties of Lactobacillus casei IMAU60214, as well as the effect of cell-free supernatant (CSF) on growth and anti-cytotoxic activity in a cell model of the human intestinal epithelium for an agar diffusion assay (HT-29) and the inhibition of biofilm formation on plates of DEC strains of the EAEC and EHEC pathotypes. The results showed that L. casei IMAU60214 exhibits time-dependent coaggregation (35–40%) against EAEC and EHEC that is similar to the control E. coli ATCC 25922. The CSF showed antimicrobial activity (20–80%) against EAEC and EHEC depending on the concentration. In addition, the formation and dispersion of biofilms of the same strains decrease, and the proteolytic pre-treatment with catalase and/or proteinase K (1 mg/mL) of CSF reduces the antimicrobial effect. When evaluating the effect in HT-29 cells pre-treated with CFS on the toxic activity induced by the EAEC and EHEC strains, a reduction of between 30 and 40% was observed. The results show that L. casei IMAU60214 and its CSF have properties that interfere with some properties associated with the virulence of the EAEC and EHEC strains that cause intestinal infection, which supports their use for the control and prevention of infections caused by these bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.