Edited by Ulrike Kutay
Keywords:Alternative polyadenylation 3 0 -UTR Pta1 Pcf11 Yeast a b s t r a c t This work reports the involvement of yeast RNA processing factors Pta1 and Pcf11 in alternative 3 0 -end RNA processing. The pta1-1 and pcf11-2 mutations changed the predominance of KlCYC1 1.14 and 1.5 kb transcript isoforms. Mutation of the KlCYC1 3 0 -UTR AU-rich sequence at positions 679-690 (mutant M1) altered transcript predominance. Moreover, expression of M1 in the yeast mutants partially suppressed their effects in the predominance pattern. The combination of the M1 and M2 (694-698 deletion) mutations abolished the alternative processing. Pta1 involvement in this selection was confirmed using the Pta1-td degron strain.
DNA methylation remains an under-recognized diagnostic biomarker for several diseases, including neurodegenerative disorders. In this study, we examined differences in global DNA methylation (5mC) levels in serum samples from patients during the initial- and the follow-up visits. Each patient underwent a blood analysis and neuropsychological assessments. The analysis of 5mC levels revealed two categories of patients; Group A who, during the follow-up, had increased 5mC levels, and Group B who had decreased 5mC levels. Patients with low Fe-, folate-, and vitamin B12- levels during the initial visit showed increased levels of 5mC after treatment when assessed during the follow-up. During the follow-up, 5mC levels in Group A patients increased after treatment for hypovitaminosis with the nutraceutical compounds Animon Complex and MineraXin Plus. 5mC levels were maintained during the follow-up in Group A patients treated for neurological disorders with the bioproducts AtreMorine and NeoBrainine. There was a positive correlation between 5mC levels and MMSE scores, and an inverse correlation between 5mC and ADAS-Cog scores. This expected correlation was observed in Group A patients only. Our study appears to indicate that 5mC has a diagnostic value as a biomarker across different pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.