It has classically been accepted that the healing of narrow wounds in epithelia occurs by the formation of a contractile actin cable, while wide wounds are resurfaced by lamellipodia-dependent migration of border cells into the denuded area. To further investigate the general validity of this idea, we performed systematic experiments of the roles of wound geometry, wound size, and extracellular matrix (ECM) in wound healing in monolayers of bovine corneal endothelial cells, a system shown here to predominantly display any of the two healing mechanisms according to the experimental conditions. We found that, in this system, it is the absence or presence of the ECM on the wound surface that determines the specific healing mode. Our observations demonstrate that, independent of their size and geometry, wounds created maintaining the ECM heal by migration of cells into the wound area, while ECM removal from the wound surface determines the predominant formation of an actin cable. While the latter mechanism is slower, the actin cable permits the maintainance of the epithelial phenotype to a larger extent during the healing process, as also confirmed by our finding of a more conserved localization of cadherin and vinculin. We also introduce a model that simulates experimental findings about the dynamics of healing mechanisms, both for the maintenance or removal of the ECM on the wound surface. The findings of this study may contribute to the understanding of physiological and pathological aspects of epithelial wound healing and to the design of therapeutic strategies.
Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells. Some of the resistant cell lines showed high levels of ERK1/2 phosphorylation in the absence of serum. Selumetinib inhibited phosphorylation of ERK1/2 and RSK and had no effect on AKT phosphorylation in both sensitive and resistant cells. Furthermore, mutations in KRAS, BRAF, or PIK3CA were not clearly associated with Selumetinib resistance. Surprisingly, Selumetinib was able to inhibit phosphorylation of p70 S6 kinase (p70S6K) and its downstream target ribosomal protein S6 (RPS6) in sensitive cell lines. However, p70S6K and RPS6 phosphorylation remained unaffected or even increased in resistant cells. Moreover, in some of the resistant cell lines p70S6K and RPS6 were phosphorylated in the absence of serum. Interestingly, colorectal primary cultures derived from tumours excised to patients exhibited the same behaviour than established cell lines. Pharmacological inhibition of p70S6K using the PI3K/mTOR inhibitor NVP-BEZ235, the specific mTOR inhibitor Rapamycin and the specific p70S6K inhibitor PF-4708671 potentiated Selumetinib effects in resistant cells. In addition, biological inhibition of p70S6K using siRNA rendered responsiveness to Selumetinib in resistant cell lines. Furthermore, combination of p70S6K silencing and PF-47086714 was even more effective. We can conclude that p70S6K and its downstream target RPS6 are potential biomarkers of resistance to Selumetinib in colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.