In the pursuit of chiral materials with significant chiral recognition effects and stability, various strategies have been explored, among which the integration of metal nanoparticles and chiral metal−organic frameworks (CMOFs) is highly promising. However, metal nanoparticles (MNPs)/CMOFs show high chiral properties but inferior stabilities due to the MNPs being easily detached from the outside layer under certain conditions. Sandwich MOFs@MNPs@CMOF chiral materials can overcome this dilemma because the sandwich structure can maximize the regulation of the chiral interface activity, while the controlled outer layer can stop the MNPs from falling off in the procedure of chiral recognition. Here, a novel sandwich chiral material (D-His-ZIF-
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the “codebook” of the earth's biological diversity‐DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l‐amino acids and d‐sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.