Global food production is facing increasing uncertainties under climate change and the coronavirus pandemic, provoking challenges and severe concerns to national food security. The role of global agricultural trade in bridging the imbalance between food supply and demand has come to the fore. However, the impact of multifaceted and dynamic factors, such as trade policies, national relations, and epidemics, on the stability of the agricultural trade network (ATN) needs to be better addressed. Quantitatively, this study estimated grouping characteristics and network stability by analyzing the changing global ATN from 1986 to 2018. We found that the evolution of global agricultural trade communities has gone through four stages: the dominance of the US–Asian community, the rise of the European–African community, the formation of tri-pillar communities, and the development of a multipolar community with a more complex structure. Despite witnessing a progressive increase in the nodal stability of the global ATN during the decades, particular gaps can still be found in stability across countries. Specifically, the European community achieved stability of 0.49 and its trade relations were effectively secured. Meanwhile, the remaining leading communities’ stability shows a stable and upward trend, albeit with more significant challenges in trade relations among some of them. Therefore, how to guarantee the stability of trade relations and strengthen the global ATN to resist external shocks has become an essential question to safeguard global food security.
The transformation of dietary structure brought about by economic development in populous countries is expected to trigger an increase in grain demand, which will put enormous pressure on the grain supply in these nations and even globally. We simulated nine demand scenarios for 2020–2050 based on China’s dataset for 15 kinds of grains from 1961–2018. The results show that the maximum difference between the predicted grain demand is 323.8 Mt, equal to the total grain consumption of approximately 600 million Chinese people in one year. To capture which demand scenarios will be met when grain productivity gradually improves within reasonable ranges, we present three projections from the production side. In particular, Projection 1 (P1), which maintains productivity at the current level, only fulfills the projected demand for Scenarios 1-LL, 2-LM, 4-ML, and 7-HL and falls short of the maximum value (Scenario 9-HH) by 117 Mt, which requires an additional 250,000 ha of arable land resources to fill the gap. After raising the preset value of grain yield, the productivity of Projection 2 in turn satisfies the demand scenario 5-MM. When both set variables (grain yields and arable area) increase simultaneously, the output of Projection 3 increases by 15.3% over P1. However, it still lags behind the demand of 68 million tons in Scenario 9-HH, thus implying uncertainty in China’s vision of meeting the goal of 95% grain self-sufficiency. Rather than pursuing a single outcome, we discuss multiple possibilities for China’s future grain balance and emphasize the adjusting and compensating role of grain trade and storage in the whole system. Ultimately, this paper calls for a better understanding of the supply–demand gap therein and its future trends to support national grain security as well as global sustainable food policies.
Live streaming commerce (LSC) effectively combines the traditional real economy and e-commerce. Based on more than half a million unique GIS data values on LSC activities sourced via Taobao (Alibaba), we traced the spatial distribution of different players along the supply chain and further highlighted the intermediary role of streamers in developing the inter-regional industry. This study guides industrial planning in a diversified regional context, especially in economically peripheral regions. Our results show the following outcomes: (1) in contrast to dispersed suppliers, streamers and consumers are highly clustered. This trend proves that streamers are rooted in a specific urban context while playing the role of an intermediary in inter-regional supply chains, effectively extending geographic interactivity between suppliers and (potential) customers. (2) LSC primarily promotes regional light industry, especially in economically peripheral and rural areas, and provides opportunities for rapid development in cities with skilled handicraft providers. (3) China’s LSC streams have a pyramid structure, and the top group is highly clustered in metropolitan regions, such as the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). This clustering makes it easier for streamers to work with large, well-known brands. The bottom group is mainly in charge of expanding the supply chain within the region and relies more on the local industrial base. It is diversified due to the different types of businesses or products. Ultimately, we draw attention to adaptive spatial planning and resource allocation in the context of the economic and geographic reforms brought by this growing industry, and discuss the policy implications based on the relationships between the supply of and demand for live streamers from a broader regional perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.