In order to analyze the process of hydraulic water infiltrating cracked concrete of underwater tunnels, the equation of water transport in unsaturated cracked concrete under pressure was proposed according to the double-porosity medium model. Penetration tests on prefabricated cracked concrete blocks were conducted, and then the influence of hydraulic pressure, initial saturation, and crack width on water transport was studied. e results show that the larger the water pressure, the lower the initial saturation, and the wider the crack width, then the greater the penetration depth, which can be reasonably explained according to water motion theoretical models in this study. Moreover, the TOUGH2 software was used to simulate the change and distribution of saturation, driving potential, and water velocity of unsaturated cracked concrete, which further proved the experimental results and theoretical analysis. It reflects that both pressure potential and matric potential are the driving force of water transport in underwater cracked concrete, and the driving force will be converted with the change of concrete saturation. In addition, crack width is positively correlated with concrete permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.