We introduce and analyze families of Galerkin--collocation discretization schemes
in time for the wave equation. Their conceptual basis is the establishment of a connection
between the Galerkin method for the time discretization and the classical collocation
methods, with the perspective of achieving the accuracy of the former with reduced computational
costs provided by the latter in terms of less complex algebraic systems. Firstly, continuously differentiable in time discrete solutions are studied. Optimal order error estimates are proved. Then, the concept of Galerkin--collocation approximation is extended to twice continuously differentiable in time discrete solutions. A direct link between the two families by a computationally cheap post-processing is presented. A key ingredient of the proposed methods is the application of quadrature rules involving derivatives. The performance properties of the schemes are illustrated by numerical experiments.
We introduce and analyze a class of Galerkin-collocation discretization schemes in time for the wave equation. Its conceptual basis is the establishment of a direct connection between the Galerkin method for the time discretization and the classical collocation methods, with the perspective of achieving the accuracy of the former with reduced computational costs provided by the latter in terms of less complex linear algebraic systems. Continuously differentiable in time discrete solutions are obtained by the application of a special quadrature rule involving derivatives. Optimal order error estimates are proved for fully discrete approximations based on the Galerkin-collocation approach. Further, the concept of Galerkin-collocation approximation is extended to twice continuously differentiable in time discrete solutions. A direct connection between the two families by a computationally cheap post-processing is presented. The error estimates are illustrated by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.