Agriculture provides an unique opportunity for the development of robotic systems; robots must be developed which can operate in harsh conditions and in highly uncertain and unknown environments. One particular challenge is performing manipulation for autonomous robotic harvesting. This paper describes recent and current work to automate the harvesting of iceberg lettuce. Unlike many other produce, iceberg is challenging to harvest as the crop is easily damaged by handling and is very hard to detect visually. A platform called Vegebot has been developed to enable the iterative development and field testing of the solution, which comprises of a vision system, custom end effector and software. To address the harvesting challenges posed by iceberg lettuce a bespoke vision and learning system has been developed which uses two integrated convolutional neural networks to achieve classification and localization. A custom end effector has been developed to allow damage free harvesting. To allow this end effector to achieve repeatable and consistent harvesting, a control method using force feedback allows detection of the ground. The system has been tested in the field, with experimental evidence gained which demonstrates the success of the vision system to localize and classify the lettuce, and the full integrated system to harvest lettuce. This study demonstrates how existing state‐of‐the art vision approaches can be applied to agricultural robotics, and mechanical systems can be developed which leverage the environmental constraints imposed in such environments.
Agricultural robots are subject to a much harsher environment than those in the factory or lab and control strategies need to take this into account while maintaining a low cycle time. Three control strategies were tested on Vegebot, a lettuce-picking robot, in both simulation and on the real robot. Between a fast open loop that was vulnerable to environmental noise and a slow but robust visual servoing technique, a Learned Open Loop strategy was tested where the robot learned from successful picks to pick at an intermediate speed. This reduced the projected cycle time from 31s to 17.2s, a 45% reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.