Summary1. Ecosystem services are the benefits humans obtain from ecosystems. The importance of research into ecosystem services has been widely recognized, and rapid progress is being made. However, the prevailing approach to quantifying ecosystem services is still based on static analyses and single services, ignoring system dynamics, uncertainty and feedbacks. This is not only partly due to a lack of mechanistic understanding of processes and a dearth of empirical data, but also due to a failure to engage fully with the interdisciplinarity of the problem. 2. We argue that there is a tendency to ignore the feedbacks between and within both social and ecological systems, and a lack of explicit consideration of uncertainty. Metrics need to be developed that can predict thresholds, which requires strong linkages to underlying processes, while the development of policy for management of ecosystem services needs to be based on a broader understanding of value and drivers of human well-being. 3. We highlight the complexities, gaps in current knowledge and research, and the potentially promising avenues for future investigation in four priority research areas: agendas, processes, metrics and uncertainty. 4. Synthesis and applications. The research interest in the field of ecosystem services is rapidly expanding, and can contribute significantly to the sustainable management of natural resources. However, a narrow disciplinary approach, or an approach which does not consider feedbacks within and between ecological and social systems, has the potential to produce dangerously misleading policy recommendations. In contrast, if we explicitly acknowledge and address uncertainties and complexities in the provision of ecosystem services, progress may appear slower but our models will be substantially more robust and informative about the effects of environmental change.
We present a new class of radiation field states which exhibit squeezed fluctuations. This new class of states are formed by a simple implementation of the superposition principle and are fundamentally different from the conventional two-photon coherent squeezed states. We demonstrate the importance of these states as the natural product of the resonant interaction of suitably prepared atoms with the radiation field. We establish a general relationship between reduced quantum fluctuations of these field states and the dipole fluctuations of the atoms which produce them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.