An electrode surface is presented that enables the characterization of redox-active membrane enzymes in a native-like environment. An ubiquinol oxidase from Escherichia coli, cytochrome bo(3) (cbo(3)), has been co-immobilized into tethered bilayer lipid membranes (tBLMs). The tBLM is formed on gold surfaces functionalized with cholesterol tethers which insert into the lower leaflet of the membrane. The planar membrane architecture is formed by self-assembly of proteoliposomes, and its structure is characterized by surface plasmon resonance (SPR), electrochemical impedance spectroscopy (EIS), and tapping-mode atomic force microscopy (TM-AFM). The functionality of cbo(3) is investigated by cyclic voltammetry (CV) and is confirmed by the catalytic reduction of oxygen. Interfacial electron transfer to cbo(3) is mediated by the membrane-localized ubiquinol-8, the physiological electron donor of cbo(3). Enzyme coverages observed with TM-AFM and CV coincide (2-8.5 fmol.cm(-)(2)), indicating that most-if not all-cbo(3) on the surface is catalytically active and thus retains its integrity during immobilization.
The established hypothesis for the increase on erythrocyte aggregation associated with a higher incidence of cardiovascular pathologies is based on an increase on plasma adhesion proteins concentration, particularly fibrinogen. Fibrinogen-induced erythrocyte aggregation has been considered to be caused by its nonspecific binding to erythrocyte membranes. In contrast, platelets are known to have a fibrinogen integrin receptor expressed on the membrane surface (the membrane glycoprotein complex alpha(IIb)beta(3)). We demonstrate, by force spectroscopy measurements using an atomic force microscope (AFM), the existence of a single molecule interaction between fibrinogen and an unknown receptor on the erythrocyte membrane, with a lower but comparable affinity relative to platelet binding (average fibrinogen--erythrocyte and --platelet average (un)binding forces were 79 and 97 pN, respectively). This receptor is not as strongly influenced by calcium and eptifibatide (an alpha(IIb)beta(3) specific inhibitor) as the platelet receptor. However, its inhibition by eptifibatide indicates that it is an alpha(IIb)beta(3)-related integrin. Results obtained for a Glanzmann thrombastenia (a rare hereditary bleeding disease caused by alpha(IIb)beta(3) deficiency) patient show (for the first time) an impaired fibrinogen--erythrocyte binding. Correlation with genetic sequencing data demonstrates that one of the units of the fibrinogen receptor on erythrocytes is a product of the expression of the beta(3) gene, found to be mutated in this patient. This work demonstrates and validates the applicability of AFM-based force spectroscopy as a highly sensitive, rapid and low operation cost nanotool for the diagnostic of genetic mutations resulting in hematological diseases, with an unbiased functional evaluation of their severity.
This review aims to outline the effects of fluoride on the biological processes involved in the formation of tooth tissues, particularly dental enamel. Attention has been focused on mechanisms which, if compromised, could give rise to dental fluorosis. The literature is extensive and often confusing but a much clearer picture is emerging based on recent more detailed knowledge of odontogenesis. Opacity, characteristic of fluorotic enamel, results from incomplete apatite crystal growth. How this occurs is suggested by other changes brought about by fluoride. Matrix proteins, associated with the mineral phase, normally degraded and removed to permit final crystal growth, are to some extent retained in fluorotic tissue. Fluoride and magnesium concentrations increase while carbonate is reduced. Crystal surface morphology at the nano-scale is altered and functional ameloblast morphology at the maturation stage also changes. Fluoride incorporation into enamel apatite produces more stable crystals. Local supersaturation levels with regard to the fluoridated mineral will also be elevated facilitating crystal growth. Such changes in crystal chemistry and morphology, involving stronger ionic and hydrogen bonds, also lead to greater binding of modulating matrix proteins and proteolytic enzymes. This results in reduced degradation and enhanced retention of protein components in mature tissue. This is most likely responsible for porous fluorotic tissue, since matrix protein removal is necessary for unimpaired crystal growth. To resolve the outstanding problems of the role of cell changes and the precise reasons for protein retention more detailed studies will be required of alterations to cell function, effect on specific protein species and the nano-chemistry of the apatite crystal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.