In this work, we investigated several titanates with lepidocrocite-type structures (general formula A x Ti 1−y M y O 4 with A=Na and M=Li or Mg), having potential utility as anode materials for sodium-ion batteries. First principles calculations were used to determine key battery metrics, including potential profiles, structural changes during sodiation, and sodium diffusion energy barriers for several compositions, and compared to experimental results. Site limitations were found to be critical determinants of the gravimetric capacities, which are also affected both by the stacking arrangement of the
The ability to resolve solvent in- and outside of the pores of mesoscopic porous silicon structures allows the effect of confinement on transport to be explored by 1H and 7Li PFG NMR methods and pore diameters and lengths to be estimated.
Controlling the arrangement and interface of nanoparticles is essential to achieve good transfer of charge, heat, or mechanical load. This is particularly challenging in systems requiring hybrid nanoparticle mixtures such as combinations of organic and inorganic materials. This work presents a process to coat vertically aligned carbon nanotube (CNT) forests with metal oxide nanoparticles using microwave‐assisted hydrothermal synthesis. Hydrothermal processes normally damage delicate CNT forests, which is addressed here by a combination of lithographic patterning, transfer printing, and reduction of the synthesis time. This process is applied for the fabrication of structured Li‐ion battery (LIB) electrodes where the aligned CNTs provide a straight electron transport path through the electrode and the hydrothermal coating process is used to coat the CNTs with conversion anode materials for LIBs. These nanoparticles are anchored on the surface of the CNTs and batteries fabricated following this process show a fourfold longer cyclability. Finally, this process is used to create thick electrodes (350 µm) with a gravimetric capacity of over 900 mAh g−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.