Figure 1: This figure shows the application of CGA shape, a novel shape grammar for the procedural modeling of computer graphics architecture. First, the grammar generates procedural variations of the building mass model using volumetric shapes and then proceeds to create façade detail consistent with the mass model. Context sensitive rules ensure that entities like windows or doors do not intersect with other walls, that doors give out on terraces or the street level, that terraces are bounded by railings, etc. AbstractCGA shape, a novel shape grammar for the procedural modeling of CG architecture, produces building shells with high visual quality and geometric detail. It produces extensive architectural models for computer games and movies, at low cost. Context sensitive shape rules allow the user to specify interactions between the entities of the hierarchical shape descriptions. Selected examples demonstrate solutions to previously unsolved modeling problems, especially to consistent mass modeling with volumetric shapes of arbitrary orientation. CGA shape is shown to efficiently generate massive urban models with unprecedented level of detail, with the virtual rebuilding of the archaeological site of Pompeii as a case in point.
No abstract
The rapid development of computer graphics and imaging provides the modern archeologist with several tools to realistically model and visualize archeological sites in 3D. This, however, creates a tension between veridical and realistic modeling. Visually compelling models may lead people to falsely believe that there exists very precise knowledge about the past appearance of a site. In order to make the underlying uncertainty visible, it has been proposed to encode this uncertainty with different levels of transparency in the rendering, or of decoloration of the textures. We argue that procedural modeling technology based on shape grammars provides an interesting alternative to such measures, as they tend to spoil the experience for the observer. Both its efficiency and compactness make procedural modeling a tool to produce multiple models, which together sample the space of possibilities. Variations between the different models express levels of uncertainty implicitly, while letting each individual model keeping its realistic appearance. The underlying, structural description makes the uncertainty explicit. Additionally, procedural modeling also yields the flexibility to incorporate changes as knowledge of an archeological site gets refined. Annotations explaining modeling decisions can be included. We demonstrate our procedural modeling implementation with several recent examples.
In this paper we propose a real-time rendering approach for procedural cities. Our first contribution is a new lightweight grammar representation that compactly encodes facade structures and allows fast per-pixel access. We call this grammar F-shade. Our second contribution is a prototype rendering system that renders an urban model from the compact representation directly on the GPU. Our suggested approach explores an interesting connection from procedural modeling to real-time rendering. Evaluating procedural descriptions at render time uses less memory than the generation of intermediate geometry. This enables us to render large urban models directly from GPU memory.
ABSTRACT:Procedural modeling has proven to be a very valuable tool in the field of architecture. In the last few years, research has soared to automatically create procedural models from images. However, current algorithms for this process of inverse procedural modeling rely on the assumption that the building style is known. So far, the determination of the building style has remained a manual task. In this paper, we propose an algorithm which automates this process through classification of architectural styles from facade images. Our classifier first identifies the images containing buildings, then separates individual facades within an image and determines the building style. This information could then be used to initialize the building reconstruction process. We have trained our classifier to distinguish between several distinct architectural styles, namely Flemish Renaissance, Haussmannian and Neoclassical. Finally, we demonstrate our approach on various street-side images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.