The interest in saccadic IOR is funneled by the hypothesis that it serves a clear functional purpose in the selection of fixation points: the facilitation of foraging. In this study, we arrive at a different interpretation of saccadic IOR. First, we find that return saccades are performed much more often than expected from the statistical properties of saccades and saccade pairs. Second, we find that fixation durations before a saccade are modulated by the relative angle of the saccade, but return saccades show no sign of an additional temporal inhibition. Thus, we do not find temporal saccadic inhibition of return. Interestingly, we find that return locations are more salient, according to empirically measured saliency (locations that are fixated by many observers) as well as stimulus dependent saliency (defined by image features), than regular fixation locations. These results and the finding that return saccades increase the match of individual trajectories with a grand total priority map evidences the return saccades being part of a fixation selection strategy that trades off exploration and exploitation.
The surface and subsurface conditions of components are significant for their functional properties. Every manufacturing process step changes the surface condition due to its mechanical, chemical and/or thermal impact. The depth of the affected zone varies for different machining operations, and is predetermined by the process parameters and characteristics. Furthermore, the initial state has a decisive influence on the interactions that lead to the final surface conditions. The aim of the investigation presented here is to compare the influence of the load characteristics over the depth applied to manufactured components by several different machining operations and to determine the causing mechanisms. In order to ensure better comparability between the surface modifications caused by different machining operations, the same material was used (AISI 4140; German steel grade 42CrMo4 acc. to DIN EN 10083-3) and annealed to a ferritic-pearlitic microstructure. Based on interdisciplinary cooperation within the collaborative research center CRC/Transregio 136 “Process Signatures”, seven different manufacturing processes, i.e., grinding, turning, deep rolling, laser processing, inductive heat treatment, electrical discharge machining (EDM) and electrochemical machining (ECM), were used, and the resulting surface zones were investigated by highly specialized analysis techniques. This work presents the results of X-ray measurements, hardness measurements and electron microscopic investigations. As a result, the characteristics and depths of the material modifications, as well as their underlying mechanisms and causes, were studied. Mechanisms occurring within 42CrMo4 steel due to thermal, mechanical, chemical or mixed impacts were identified as phase transformation, solidification and strengthening due to dislocation generation and accumulation, continuum dynamic recrystallization and dynamic recovery, as well as chemical reactions.
Due to the increasing use of hard to machine nickel-based alloys in aircraft engines, electrochemical machining (ECM) is an important manufacturing alternative, especially in blade and blisk (blade integrated disk) production. However, caused by constantly changing properties of the electrolyte during machining, it is difficult to predict suitable tool electrode (cathode) geometry for a given workpiece contour a priori. Especially temperature and gas evolution affect the conductivity of the electrolyte significantly and thus lead to local deviations in dissolving rate. So this paper presents optical in situ measurements of electrochemical machining the nickel-based alloy Inconel 718 in terms of highspeed and thermography camera recordings. With the help of these measurements on the one hand a deeper process understanding is generated and on the other hand the findings will serve as input and validation for an interdisciplinary process simulation model based on conservation equations. Finally this model will be used to calculate a complex geometry and will be compared to experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.